Javascript must be enabled to continue!
Further results on the neutrix composition of distributions involving the delta function and the function cosh+-1(x1/r+1)$\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)$
View through CrossRef
Abstract
The neutrix composition F(f (x)) of a distribution F(x) and a locally summable function f (x) is said to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {Fn
(f (x))} is equal to h(x), where Fn
(x) = F(x) * δ
n
(x) and {δ
n
(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function (x). The function
cosh
+
-
1
(
x
+
1
)
$\cosh _ + ^{ - 1}\left( {x + 1} \right)$
is defined by
cosh
+
-
1
(
x
+
1
)
=
H
(
x
)
cosh
-
1
(
|
x
|
+
1
)
,
$$\cosh _ + ^{ - 1}\left( {x + 1} \right) = H\left( x \right){\cosh ^{ - 1}}\left( {\left| x \right| + 1} \right),$$
where H(x) denotes Heaviside’s function. It is then proved that the neutrix composition
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right]$
] exists and
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
=
∑
k
=
0
s
-
1
∑
j
=
0
k
r
+
r
-
1
∑
i
=
0
j
(
-
1
)
k
r
+
r
+
s
-
j
-
1
r
2
j
+
2
(
k
r
+
r
-
1
j
)
(
j
i
)
[
(
j
-
2
i
+
1
)
s
-
(
i
-
2
i
-
1
)
s
]
δ
(
k
)
(
x
)
,
$${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right] = \sum\limits_{k = 0}^{s - 1} {\sum\limits_{j = 0}^{kr + r - 1} {\sum\limits_{i = 0}^j {{{{{( - 1)}^{kr + r + s - j - 1}}r} \over {{2^{j + 2}}}}\left( {\matrix{{kr + r - 1} \cr j \cr } } \right)} } } \left( {\matrix{j \cr i \cr } } \right)\left[ {{{\left( {j - 2i + 1} \right)}^s} - {{\left( {i - 2i - 1} \right)}^s}} \right]{\delta ^{(k)}}(x),$$
for r, s = 1, 2, . . . . Further results are also proved.
Our results improve, extend and generalize the main theorem of [Fisher B., Al-Sirehy F., Some results on the neutrix composition of distributions involving the delta function and the function cosh−1
+(x + 1), Appl. Math. Sci. (Ruse), 2014, 8(153), 7629–7640].
Title: Further results on the neutrix composition of distributions involving the delta function and the function cosh+-1(x1/r+1)$\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)$
Description:
Abstract
The neutrix composition F(f (x)) of a distribution F(x) and a locally summable function f (x) is said to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {Fn
(f (x))} is equal to h(x), where Fn
(x) = F(x) * δ
n
(x) and {δ
n
(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function (x).
The function
cosh
+
-
1
(
x
+
1
)
$\cosh _ + ^{ - 1}\left( {x + 1} \right)$
is defined by
cosh
+
-
1
(
x
+
1
)
=
H
(
x
)
cosh
-
1
(
|
x
|
+
1
)
,
$$\cosh _ + ^{ - 1}\left( {x + 1} \right) = H\left( x \right){\cosh ^{ - 1}}\left( {\left| x \right| + 1} \right),$$
where H(x) denotes Heaviside’s function.
It is then proved that the neutrix composition
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right]$
] exists and
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
=
∑
k
=
0
s
-
1
∑
j
=
0
k
r
+
r
-
1
∑
i
=
0
j
(
-
1
)
k
r
+
r
+
s
-
j
-
1
r
2
j
+
2
(
k
r
+
r
-
1
j
)
(
j
i
)
[
(
j
-
2
i
+
1
)
s
-
(
i
-
2
i
-
1
)
s
]
δ
(
k
)
(
x
)
,
$${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right] = \sum\limits_{k = 0}^{s - 1} {\sum\limits_{j = 0}^{kr + r - 1} {\sum\limits_{i = 0}^j {{{{{( - 1)}^{kr + r + s - j - 1}}r} \over {{2^{j + 2}}}}\left( {\matrix{{kr + r - 1} \cr j \cr } } \right)} } } \left( {\matrix{j \cr i \cr } } \right)\left[ {{{\left( {j - 2i + 1} \right)}^s} - {{\left( {i - 2i - 1} \right)}^s}} \right]{\delta ^{(k)}}(x),$$
for r, s = 1, 2, .
.
.
.
Further results are also proved.
Our results improve, extend and generalize the main theorem of [Fisher B.
, Al-Sirehy F.
, Some results on the neutrix composition of distributions involving the delta function and the function cosh−1
+(x + 1), Appl.
Math.
Sci.
(Ruse), 2014, 8(153), 7629–7640].
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
<p>Νίκος Οικονομίδης</...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">ΠΗΛΙΝΑ ΙΓ&Delta...
Delta-8-THC: Delta-9-THC’s nicer younger sibling?
Delta-8-THC: Delta-9-THC’s nicer younger sibling?
Abstract
Background
Products containing delta-8-THC became widely available in most of the USA following the 2018 Farm Bill and by late 2020 were co...
Hydatid Cyst of The Orbit: A Systematic Review with Meta-Data
Hydatid Cyst of The Orbit: A Systematic Review with Meta-Data
Abstarct
Introduction
Orbital hydatid cysts (HCs) constitute less than 1% of all cases of hydatidosis, yet their occurrence is often linked to severe visual complications. This stu...
ANALISIS SEDIMEN DAN PERUBAHAN KONDISI LINGKUNGAN:DAERAH KASUS DELTA MAHAKAM KALIMANTAN TIMUR
ANALISIS SEDIMEN DAN PERUBAHAN KONDISI LINGKUNGAN:DAERAH KASUS DELTA MAHAKAM KALIMANTAN TIMUR
Delta Mahakam mempunyai sumberdaya minyak dan gas bumi serta sumberdaya laut lainnya. Hutan mangrove di kawasan Delta Mahakam merupakan salah satu parameter kelestarian lingkungan....
Economic Merits of Private Equity Infrastructure Ownership
Economic Merits of Private Equity Infrastructure Ownership
Abstract
By mid-2012, LLOG Exploration Company, LLC ("LLOG") and its working interest partners (the "Producer Group") had secured leasehold interests and successfull...
Un manoscritto equivocato del copista santo Theophilos († 1548)
Un manoscritto equivocato del copista santo Theophilos († 1548)
<p><font size="3"><span class="A1"><span style="font-family: 'Times New Roman','serif'">ΕΝΑ ΛΑΝ&...


