Javascript must be enabled to continue!
Multiobjective Optimal Control of Longitudinal Seismic Response of a Multitower Cable-Stayed Bridge
View through CrossRef
The dynamic behavior of a multitower cable-stayed bridge with the application of partially longitudinal constraint system using viscous fluid dampers under real earthquake ground motions is presented. The study is based on the dynamic finite element model of the Jiashao Bridge, a six-tower cable-stayed bridge in China. The prime aim of the study is to investigate the effectiveness of viscous fluid dampers on the longitudinal seismic responses of the bridge and put forth a multiobjective optimization design method to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multitower cable-stayed bridge with the partially longitudinal constraint system is to yield maximum reductions in the base forces of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base forces of bridge towers longitudinally unrestricted with the bridge deck. To this end, a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II) is used to optimize parameters of the viscous fluid dampers. The effectiveness of the proposed optimization design method is demonstrated for the multitower cable-stayed bridge with the partially longitudinal constraint system, which reveals that a design engineer can choose a set of proper parameters of the viscous fluid dampers from Pareto optimal fronts that can satisfy the desired performance requirements.
Title: Multiobjective Optimal Control of Longitudinal Seismic Response of a Multitower Cable-Stayed Bridge
Description:
The dynamic behavior of a multitower cable-stayed bridge with the application of partially longitudinal constraint system using viscous fluid dampers under real earthquake ground motions is presented.
The study is based on the dynamic finite element model of the Jiashao Bridge, a six-tower cable-stayed bridge in China.
The prime aim of the study is to investigate the effectiveness of viscous fluid dampers on the longitudinal seismic responses of the bridge and put forth a multiobjective optimization design method to determine the optimized parameters of the viscous fluid dampers.
The results of the investigations show that the control objective of the multitower cable-stayed bridge with the partially longitudinal constraint system is to yield maximum reductions in the base forces of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base forces of bridge towers longitudinally unrestricted with the bridge deck.
To this end, a multiobjective optimization design method that uses a nondominating sort genetic algorithm II (NSGA-II) is used to optimize parameters of the viscous fluid dampers.
The effectiveness of the proposed optimization design method is demonstrated for the multitower cable-stayed bridge with the partially longitudinal constraint system, which reveals that a design engineer can choose a set of proper parameters of the viscous fluid dampers from Pareto optimal fronts that can satisfy the desired performance requirements.
Related Results
SEISMIC VULNERABILITY ANALYSIS OF CABLE-STAYED BRIDGE DURING ROTATION CONSTRUCTION
SEISMIC VULNERABILITY ANALYSIS OF CABLE-STAYED BRIDGE DURING ROTATION CONSTRUCTION
Due to the swivel construction, the structural redundancy of cable-stayed bridge is reduced, and its seismic vulnerability is significantly higher than that of non-swirli...
Performance Assessment of Repair and Reinforcement of Concrete Cable-Stayed Bridges in Service Based on Time-Dependent Reliability under Environmental Sustainability Development
Performance Assessment of Repair and Reinforcement of Concrete Cable-Stayed Bridges in Service Based on Time-Dependent Reliability under Environmental Sustainability Development
The reliability of concrete cable-stayed bridge structure is time variant. This is due to strength deterioration and time-variant mechanical and environmental loadings. Demands for...
Mechanical Analysis of Stayed Bridge
Mechanical Analysis of Stayed Bridge
Cable stayed bridge, also known as the cable-stayed bridge is of box girder with many cable directly to the
towers is a kind of bridge, is by the pressure of the tower, tension of ...
4D Seismic on Gullfaks
4D Seismic on Gullfaks
SUMMARY
New technologies are rapidly emerging helping to obtain optimal drainage of large reservoirs. 4D seismic is such a reservoir monitoring technique. The phy...
Long-Term Monitoring of Cable Tension Force in Cable-stayed Bridges using the Vibration Method. The Case Study of Binh Bridge, Vietnam
Long-Term Monitoring of Cable Tension Force in Cable-stayed Bridges using the Vibration Method. The Case Study of Binh Bridge, Vietnam
The tension force of a cable is an important parameter used to ensure the stable and safe working of cable-stayed bridges. This parameter needs to be strictly controlled throughout...
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Abstract
Mapping and discrimination of Upper Jurassic Arab reservoirs (Arab A/B/C and D) in this 3D seismic onshore field of Abu Dhabi, is very sensitive to the seis...
A New Health Monitoring System for Cable-Stayed Bridges II: Applications
A New Health Monitoring System for Cable-Stayed Bridges II: Applications
In the companion paper, a new health monitoring system with five sub-systems is proposed for cable-stayed bridges. In this paper, for a health monitoring system of the cable-stayed...
Construction control of cable-stayed bridges
Construction control of cable-stayed bridges
This work presents a study of the simulation of cable-stayed bridges built on temporary supports focused on their response during construction and in service. To simulate the behav...


