Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Deciphering the code of viral-host adaptation through maximum entropy models

View through CrossRef
AbstractUnderstanding how the genome of a virus evolves depending on the host it infects is an important question that challenges our knowledge about several mechanisms of host-pathogen interactions, including mutational signatures, innate immunity, and codon optimization. A key facet of this general topic is the study of viral genome evolution after a host-jumping event, a topic which has experienced a surge in interest due to the fight against emerging pathogens such as SARS-CoV-2. In this work, we tackle this question by introducing a new method to learn Maximum Entropy Nucleotide Bias models (MENB) reflecting single, di- and tri-nucleotide usage, which can be trained from viral sequences that infect a given host. We show that both the viral family and the host leave a fingerprint in nucleotide usages which MENB models decode. When the task is to classify both the host and the viral family for a sequence of unknown viral origin MENB models outperform state of the art methods based on deep neural networks. We further demonstrate the generative properties of the proposed framework, presenting an example where we change the nucleotide composition of the 1918 H1N1 Influenza A sequence without changing its protein sequence, while manipulating the nucleotide usage, by diminishing its CpG content. Finally we consider two well-known cases of zoonotic jumps, for the H1N1 Influenza A and for the SARS-CoV-2 viruses, and show that our method can be used to track the adaptation to the new host and to shed light on the more relevant selective pressures which have acted on motif usage during this process. Our work has wide-ranging applications, including integration into metagenomic studies to identify hosts for diverse viruses, surveillance of emerging pathogens, prediction of synonymous mutations that effect immunogenicity during viral evolution in a new host, and the estimation of putative evolutionary ages for viral sequences in similar scenarios. Additionally, the computational frame-work introduced here can be used to assist vaccine design by tuning motif usage with fine-grained control.Author summaryIn our research, we delved into the fascinating world of viruses and their genetic changes when they jump from one host to another, a critical topic in the study of emerging pathogens. We developed a novel computational method to capture how viruses change the nucleotide usage of their genes when they infect different hosts. We found that viruses from various families have unique strategies for tuning their nucleotide usage when they infect the same host. Our model could accurately pinpoint which host a viral sequence came from, even when the sequence was vastly different from the ones we trained on. We demonstrated the power of our method by altering the nucleotide usage of an RNA sequence without affecting the protein it encodes, providing a proof-of-concept of a method that can be used to design better RNA vaccines or to fine-tune other nucleic acid-based therapies. Moreover the framework we introduce can help tracking emerging pathogens, predicting synonymous mutations in the adaptation to a new host and estimating how long viral sequences have been evolving in it. Overall, our work sheds light on the intricate interactions between viruses and their hosts.
Title: Deciphering the code of viral-host adaptation through maximum entropy models
Description:
AbstractUnderstanding how the genome of a virus evolves depending on the host it infects is an important question that challenges our knowledge about several mechanisms of host-pathogen interactions, including mutational signatures, innate immunity, and codon optimization.
A key facet of this general topic is the study of viral genome evolution after a host-jumping event, a topic which has experienced a surge in interest due to the fight against emerging pathogens such as SARS-CoV-2.
In this work, we tackle this question by introducing a new method to learn Maximum Entropy Nucleotide Bias models (MENB) reflecting single, di- and tri-nucleotide usage, which can be trained from viral sequences that infect a given host.
We show that both the viral family and the host leave a fingerprint in nucleotide usages which MENB models decode.
When the task is to classify both the host and the viral family for a sequence of unknown viral origin MENB models outperform state of the art methods based on deep neural networks.
We further demonstrate the generative properties of the proposed framework, presenting an example where we change the nucleotide composition of the 1918 H1N1 Influenza A sequence without changing its protein sequence, while manipulating the nucleotide usage, by diminishing its CpG content.
Finally we consider two well-known cases of zoonotic jumps, for the H1N1 Influenza A and for the SARS-CoV-2 viruses, and show that our method can be used to track the adaptation to the new host and to shed light on the more relevant selective pressures which have acted on motif usage during this process.
Our work has wide-ranging applications, including integration into metagenomic studies to identify hosts for diverse viruses, surveillance of emerging pathogens, prediction of synonymous mutations that effect immunogenicity during viral evolution in a new host, and the estimation of putative evolutionary ages for viral sequences in similar scenarios.
Additionally, the computational frame-work introduced here can be used to assist vaccine design by tuning motif usage with fine-grained control.
Author summaryIn our research, we delved into the fascinating world of viruses and their genetic changes when they jump from one host to another, a critical topic in the study of emerging pathogens.
We developed a novel computational method to capture how viruses change the nucleotide usage of their genes when they infect different hosts.
We found that viruses from various families have unique strategies for tuning their nucleotide usage when they infect the same host.
Our model could accurately pinpoint which host a viral sequence came from, even when the sequence was vastly different from the ones we trained on.
We demonstrated the power of our method by altering the nucleotide usage of an RNA sequence without affecting the protein it encodes, providing a proof-of-concept of a method that can be used to design better RNA vaccines or to fine-tune other nucleic acid-based therapies.
Moreover the framework we introduce can help tracking emerging pathogens, predicting synonymous mutations in the adaptation to a new host and estimating how long viral sequences have been evolving in it.
Overall, our work sheds light on the intricate interactions between viruses and their hosts.

Related Results

Viral Hijacking of Host RNA-Binding Proteins: Implications for Viral Replication and Pathogenesis
Viral Hijacking of Host RNA-Binding Proteins: Implications for Viral Replication and Pathogenesis
In the intricate dance between viruses and host cells, RNA-binding proteins (RBPs) serve as crucial orchestrators of gene expression and cellular processes. We will delve into the ...
Quantifying the relationship between within-host dynamics and transmission for viral diseases of livestock
Quantifying the relationship between within-host dynamics and transmission for viral diseases of livestock
AbstractUnderstanding the population dynamics of an infectious disease requires linking within-host dynamics and between-host transmission in a quantitative manner, but this is sel...
Entropy and Wealth
Entropy and Wealth
While entropy was introduced in the second half of the 19th century in the international vocabulary as a scientific term, in the 20th century it became common in colloquial use. Po...
Bioinformatics analysis and collection of protein post-translational modification sites in human viruses
Bioinformatics analysis and collection of protein post-translational modification sites in human viruses
AbstractIn viruses, post-translational modifications (PTMs) are essential for their life cycle. Recognizing viral PTMs is very important for better understanding the mechanism of v...
Design of Malicious Code Detection System Based on Binary Code Slicing
Design of Malicious Code Detection System Based on Binary Code Slicing
<p>Malicious code threatens the safety of computer systems. Researching malicious code design techniques and mastering code behavior patterns are the basic work of network se...
Alih Kode Dan Campur Kode Dalam Interaksi Masyarakat Terminal Motabuik Kota Atambua
Alih Kode Dan Campur Kode Dalam Interaksi Masyarakat Terminal Motabuik Kota Atambua
This research aims to describe the use of language in community interactions at the Motabuik terminal, Atambua City. The use of language in question is the form and function of cod...

Back to Top