Javascript must be enabled to continue!
The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation
View through CrossRef
Aiming at the two characteristics of premature convergence of particle swarm optimization that the particle velocity approaches 0 and particle swarm congregate, this paper learns from the annealing function of the simulated annealing algorithm and adaptively and dynamically adjusts inertia weights according to the velocity information of particles to avoid approaching 0 untimely. This paper uses the good uniformity of Anderson chaotic mapping and performs chaos perturbation to part of particles based on the information of variance of the population’s fitness to avoid the untimely aggregation of particle swarm. The numerical simulations of five test functions are performed and the results are compared with several swarm intelligence heuristic algorithms. The results shows that the modified algorithm can keep the population diversity well in the middle stage of the iterative process and it can improve the mean best of the algorithm and the success rate of search.
Agora University of Oradea
Title: The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation
Description:
Aiming at the two characteristics of premature convergence of particle swarm optimization that the particle velocity approaches 0 and particle swarm congregate, this paper learns from the annealing function of the simulated annealing algorithm and adaptively and dynamically adjusts inertia weights according to the velocity information of particles to avoid approaching 0 untimely.
This paper uses the good uniformity of Anderson chaotic mapping and performs chaos perturbation to part of particles based on the information of variance of the population’s fitness to avoid the untimely aggregation of particle swarm.
The numerical simulations of five test functions are performed and the results are compared with several swarm intelligence heuristic algorithms.
The results shows that the modified algorithm can keep the population diversity well in the middle stage of the iterative process and it can improve the mean best of the algorithm and the success rate of search.
Related Results
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum b...
Trajectory optimization of manipulator based on particle swarm optimization with mutation strategy
Trajectory optimization of manipulator based on particle swarm optimization with mutation strategy
Abstract
In order to solve the problems of slow convergence speed and low convergence accuracy of adaptive particle swarm algorithm, a particle swarm optimization algorithm...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
AbstractAiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value...
MENELUSURI TEORI CHAOS DALAM HUKUM MELALUI PARADIGMA CRITICAL THEORY
MENELUSURI TEORI CHAOS DALAM HUKUM MELALUI PARADIGMA CRITICAL THEORY
<p align="center"><strong>Abstract</strong></p><p><em>The paper will study a dialectic domain of chaos theory of Charles Sampford’s law by using...
Multi-objective Optimal Scheduling Analysis of Power System Based on Improved Particle Swarm Algorithm
Multi-objective Optimal Scheduling Analysis of Power System Based on Improved Particle Swarm Algorithm
Economic Environmental Dispatching (EED) in power systems is a multi-variable, strongly constrained, non-convex, multi-objective optimization problem that is difficult to properly ...
Hybrid Optimization Algorithm for Multi-level Image Thresholding Using Salp Swarm Optimization Algorithm and Ant Colony Optimization
Hybrid Optimization Algorithm for Multi-level Image Thresholding Using Salp Swarm Optimization Algorithm and Ant Colony Optimization
The process of identifying optimal threshold for multi-level thresholding in image segmentation is a challenging process. An efficient optimization algorithm is required to find th...

