Javascript must be enabled to continue!
Kallikrein Gene Transfer Protects Against Ischemic Stroke by Promoting Glial Cell Migration and Inhibiting Apoptosis
View through CrossRef
Kallikrein/kinin has been shown to protect against ischemia/reperfusion-induced myocardial infarction and apoptosis. In the present study, we examined the potential neuroprotective action of kallikrein gene transfer in cerebral ischemia. Adult, male Sprague-Dawley rats were subjected to a 1-hour occlusion of the middle cerebral artery followed by intracerebroventricular injection of adenovirus harboring either the human tissue kallikrein gene or the luciferase gene. Kallikrein gene transfer significantly reduced ischemia-induced locomotor deficit scores and cerebral infarction after cerebral ischemia injury. Expression of recombinant human tissue kallikrein was identified and localized in monocytes/macrophages of rat ischemic brain by double immunostaining. Morphological analyses showed that kallikrein gene transfer enhanced the survival and migration of glial cells into the ischemic penumbra and core, as identified by immunostaining with glial fibrillary acidic protein. Cerebral ischemia markedly increased apoptotic cells, and kallikrein gene delivery reduced apoptosis to near-normal levels as seen in sham control rats. In primary cultured glial cells, kinin stimulated cell migration but inhibited hypoxia/reoxygenation-induced apoptosis in a dose-dependent manner. The effects of kinin on both migration and apoptosis were abolished by icatibant, a bradykinin B
2
receptor antagonist. Enhanced cell survival after kallikrein gene transfer occurred in conjunction with markedly increased cerebral nitric oxide levels and phospho-Akt and Bcl-2 levels but reduced caspase-3 activation, NAD(P)H oxidase activity, and superoxide production. These results indicate that kallikrein gene transfer provides neuroprotection against cerebral ischemia injury by enhancing glial cell survival and migration and inhibiting apoptosis through suppression of oxidative stress and activation of the Akt–Bcl-2 signaling pathway.
Ovid Technologies (Wolters Kluwer Health)
Title: Kallikrein Gene Transfer Protects Against Ischemic Stroke by Promoting Glial Cell Migration and Inhibiting Apoptosis
Description:
Kallikrein/kinin has been shown to protect against ischemia/reperfusion-induced myocardial infarction and apoptosis.
In the present study, we examined the potential neuroprotective action of kallikrein gene transfer in cerebral ischemia.
Adult, male Sprague-Dawley rats were subjected to a 1-hour occlusion of the middle cerebral artery followed by intracerebroventricular injection of adenovirus harboring either the human tissue kallikrein gene or the luciferase gene.
Kallikrein gene transfer significantly reduced ischemia-induced locomotor deficit scores and cerebral infarction after cerebral ischemia injury.
Expression of recombinant human tissue kallikrein was identified and localized in monocytes/macrophages of rat ischemic brain by double immunostaining.
Morphological analyses showed that kallikrein gene transfer enhanced the survival and migration of glial cells into the ischemic penumbra and core, as identified by immunostaining with glial fibrillary acidic protein.
Cerebral ischemia markedly increased apoptotic cells, and kallikrein gene delivery reduced apoptosis to near-normal levels as seen in sham control rats.
In primary cultured glial cells, kinin stimulated cell migration but inhibited hypoxia/reoxygenation-induced apoptosis in a dose-dependent manner.
The effects of kinin on both migration and apoptosis were abolished by icatibant, a bradykinin B
2
receptor antagonist.
Enhanced cell survival after kallikrein gene transfer occurred in conjunction with markedly increased cerebral nitric oxide levels and phospho-Akt and Bcl-2 levels but reduced caspase-3 activation, NAD(P)H oxidase activity, and superoxide production.
These results indicate that kallikrein gene transfer provides neuroprotection against cerebral ischemia injury by enhancing glial cell survival and migration and inhibiting apoptosis through suppression of oxidative stress and activation of the Akt–Bcl-2 signaling pathway.
Related Results
Iranian stroke model-how to involve health policymakers
Iranian stroke model-how to involve health policymakers
Stroke in Iran, with more than 83 million population, is a leading cause of disability and mortality in adults. Stroke has higher incidence in Iran comparing the global situation a...
Comparative Characterization of Candidate Molecular Markers in Ischemic and Hemorrhagic Stroke
Comparative Characterization of Candidate Molecular Markers in Ischemic and Hemorrhagic Stroke
According to epidemiological studies, the leading cause of morbidity, disability and mortality are cerebrovascular diseases, in particular ischemic and hemorrhagic strokes. In rece...
Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats
Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats
In DOCA-salt hypertension, renal kallikrein levels are increased and may play a protective role in renal injury. We investigated the effect of enhanced kallikrein levels on kidney ...
Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing
Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing
AbstractTissue kallikrein (KLK1) processes low-molecular weight kininogen to produce vasoactive kinins, which exert biological functions via kinin receptor signaling. Using various...
Tissue Kallikrein Elicits Cardioprotection by Direct Kinin B2 Receptor Activation Independent of Kinin Formation
Tissue Kallikrein Elicits Cardioprotection by Direct Kinin B2 Receptor Activation Independent of Kinin Formation
Tissue kallikrein exerts various biological functions through kinin formation with subsequent kinin B2 receptor activation. Recent studies showed that tissue kallikrein directly ac...
HIPERTENSI, USIA, JENIS KELAMIN DAN KEJADIAN STROKE DI RUANG RAWAT INAP STROKE RSUD dr. M. YUNUS BENGKULU
HIPERTENSI, USIA, JENIS KELAMIN DAN KEJADIAN STROKE DI RUANG RAWAT INAP STROKE RSUD dr. M. YUNUS BENGKULU
Hypertension, Age, Sex, and Stroke Incidence In Stroke Installation Room RSUD dr. M. Yunus BengkuluABSTRAKStroke adalah gejala-gejala defisit fungsi susunan saraf yang diakibatka...
Kallikrein Gene Delivery Improves Serum Glucose and Lipid Profiles and Cardiac Function in Streptozotocin-Induced Diabetic Rats
Kallikrein Gene Delivery Improves Serum Glucose and Lipid Profiles and Cardiac Function in Streptozotocin-Induced Diabetic Rats
We investigated the role of the kallikrein-kinin system in cardiac function and glucose utilization in the streptozotocin (STZ)-induced diabetic rat model using a gene transfer app...
Human tissue kallikrein induces hypotension in transgenic mice.
Human tissue kallikrein induces hypotension in transgenic mice.
We investigated the role of the kallikrein-kinin system in blood pressure control by developing transgenic mice overexpressing human tissue kallikrein. Two lines of transgenic mice...

