Javascript must be enabled to continue!
Craniofacial cartilage organoids from human embryonic stem cells via a neural crest cell intermediate
View through CrossRef
AbstractSevere birth defects or major injuries to the face require surgical reconstruction and rehabilitation. The ability to make bona fide craniofacial cartilage – cartilage of the head and face – from patient-derived induced pluripotent stem cells (iPSCs) to repair these birth defects and injuries has tremendous translational applications, but is not yet possible. The neural crest is the normal developmental pathway for craniofacial cartilage, however, the knowledge of cell signaling pathways that drive neural crest differentiation into craniofacial chondrocytes is limited. Here we describe a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cells (hESCs) and IPSCs through a neural crest stem cell (NCSC) intermediate. Histological staining of cartilage organoids revealed tissue architecture typical of hyaline cartilage. Organoids were composed of rounded aggregates of glassy, gray matrix that contained scattered small nuclei in lacunae. Mass spectrometry shows that the organoids express robust levels of cartilage markers including aggrecan, perlecan, proteoglycans, and many collagens. Organoids expressed markers indicative of neural crest lineage, as well as growth factors that are candidates for chondrocyte differentiation factors. The data suggest that chondrocyte differentiation is initiated by autocrine loops driven by a combination of secreted growth factors that bind to chondrocyte receptors. Craniofacial cartilage organoids were continuously cultured for one year, reaching up to one centimeter in diameter. The ability to grow craniofacial cartilage from NCSCs provides insights into the cell signaling mechanisms of differentiation into craniofacial cartilage, which lays the groundwork for understanding mechanistic origins of congenital craniofacial anomalies and repairing cartilaginous structures of the head and face.
Title: Craniofacial cartilage organoids from human embryonic stem cells via a neural crest cell intermediate
Description:
AbstractSevere birth defects or major injuries to the face require surgical reconstruction and rehabilitation.
The ability to make bona fide craniofacial cartilage – cartilage of the head and face – from patient-derived induced pluripotent stem cells (iPSCs) to repair these birth defects and injuries has tremendous translational applications, but is not yet possible.
The neural crest is the normal developmental pathway for craniofacial cartilage, however, the knowledge of cell signaling pathways that drive neural crest differentiation into craniofacial chondrocytes is limited.
Here we describe a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cells (hESCs) and IPSCs through a neural crest stem cell (NCSC) intermediate.
Histological staining of cartilage organoids revealed tissue architecture typical of hyaline cartilage.
Organoids were composed of rounded aggregates of glassy, gray matrix that contained scattered small nuclei in lacunae.
Mass spectrometry shows that the organoids express robust levels of cartilage markers including aggrecan, perlecan, proteoglycans, and many collagens.
Organoids expressed markers indicative of neural crest lineage, as well as growth factors that are candidates for chondrocyte differentiation factors.
The data suggest that chondrocyte differentiation is initiated by autocrine loops driven by a combination of secreted growth factors that bind to chondrocyte receptors.
Craniofacial cartilage organoids were continuously cultured for one year, reaching up to one centimeter in diameter.
The ability to grow craniofacial cartilage from NCSCs provides insights into the cell signaling mechanisms of differentiation into craniofacial cartilage, which lays the groundwork for understanding mechanistic origins of congenital craniofacial anomalies and repairing cartilaginous structures of the head and face.
Related Results
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Pancreas organoid development, behaviour and structural maintenance: a multiscale analysis
Pancreas organoid development, behaviour and structural maintenance: a multiscale analysis
Until quite recently, stem cell technology mainly focused on pure populations of embryonic stem cells (ES) derived from the inner cell mass of the blastocyst and induced pluripoten...
Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids
Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immat...
Stem Cells: Hype and Reality
Stem Cells: Hype and Reality
AbstractThis update discusses what is known regarding embryonic and adult tissue-derived pluripotent stem cells, including the mechanisms underlying self-renewal without senescence...
Modeling early human neural development using iPS cells
Modeling early human neural development using iPS cells
<p dir="ltr">Human induced Pluripotent Stem Cells (iPSCs) have long been known for their great potential in disease and development modeling as well as their possible use for...
Modeling early human neural development using iPS cells
Modeling early human neural development using iPS cells
<p dir="ltr">Human induced Pluripotent Stem Cells (iPSCs) have long been known for their great potential in disease and development modeling as well as their possible use for...
Cellular Plasticity Among Axolotl Neural Crest‐Derived Pigment Cell Lineages
Cellular Plasticity Among Axolotl Neural Crest‐Derived Pigment Cell Lineages
Many of the factors and mechanisms guiding the migration/differentiation of neural crest cells that give rise to a number of distinguishable cell types, including all dermal and ep...


