Javascript must be enabled to continue!
Research Progress of Noise in High-Speed Cutting Machining
View through CrossRef
High-speed cutting technology has become a development trend in the material processing industry. However, high-intensity noise generated during high-speed cutting exerts a potential effect on the processing efficiency, processing accuracy, and product quality of the workpiece; it may even cause hidden safety hazards. To conduct an in-depth study of noise in high-speed cutting machining, this work reviews noise sources, noise collection and numerical recognition, noise control, and condition monitoring based on acoustic signals. First, this article introduces noise sources, noise signal acquisition equipment, and analysis software. It is pointed out that how to accurately classify and recognize the target signal in the complex high-speed machining environment is one of the focuses of scholars’ research. Then, it points out that a computer achieves high accuracy and practicability in signal analysis, processing, and result display. Second, in the aspect of noise signal processing, the characteristics of noise signals are analyzed. It is pointed out that accurately analyzing the characteristics of different noise source signals and adopting appropriate methods for identification and processing are the necessary conditions for effectively controlling and reducing the noise in the process of high-speed cutting. The advantages and applicable fields of artificial intelligence algorithms in processing mixed noise source signals with different frequency characteristics are compared, providing ideas for studying the mechanism of noise generation and the identification of noise sources. Third, in terms of noise control, a detailed overview is provided from the aspects of the treatment of the noise source that contributes the most to the overall noise, the improvement of the tool structure, the optimization of cutting parameters, and the analysis of contact factors between the tool and the workpiece. It provides an effective way for noise control in the process of high-speed cutting. In addition, the application of acoustic signals to condition monitoring is also thoroughly analyzed. The practical application value of condition monitoring based on acoustic signals in high-speed machining is highlighted. Finally, this paper summarizes the positive significance of noise research in high-speed machining and identifies key problems and possible research methods that require further study in the future.
Title: Research Progress of Noise in High-Speed Cutting Machining
Description:
High-speed cutting technology has become a development trend in the material processing industry.
However, high-intensity noise generated during high-speed cutting exerts a potential effect on the processing efficiency, processing accuracy, and product quality of the workpiece; it may even cause hidden safety hazards.
To conduct an in-depth study of noise in high-speed cutting machining, this work reviews noise sources, noise collection and numerical recognition, noise control, and condition monitoring based on acoustic signals.
First, this article introduces noise sources, noise signal acquisition equipment, and analysis software.
It is pointed out that how to accurately classify and recognize the target signal in the complex high-speed machining environment is one of the focuses of scholars’ research.
Then, it points out that a computer achieves high accuracy and practicability in signal analysis, processing, and result display.
Second, in the aspect of noise signal processing, the characteristics of noise signals are analyzed.
It is pointed out that accurately analyzing the characteristics of different noise source signals and adopting appropriate methods for identification and processing are the necessary conditions for effectively controlling and reducing the noise in the process of high-speed cutting.
The advantages and applicable fields of artificial intelligence algorithms in processing mixed noise source signals with different frequency characteristics are compared, providing ideas for studying the mechanism of noise generation and the identification of noise sources.
Third, in terms of noise control, a detailed overview is provided from the aspects of the treatment of the noise source that contributes the most to the overall noise, the improvement of the tool structure, the optimization of cutting parameters, and the analysis of contact factors between the tool and the workpiece.
It provides an effective way for noise control in the process of high-speed cutting.
In addition, the application of acoustic signals to condition monitoring is also thoroughly analyzed.
The practical application value of condition monitoring based on acoustic signals in high-speed machining is highlighted.
Finally, this paper summarizes the positive significance of noise research in high-speed machining and identifies key problems and possible research methods that require further study in the future.
Related Results
Precision Hard Turning of Ti6Al4V Using Polycrystalline Diamond Inserts: Surface Quality, Cutting Temperature and Productivity in Conventional and High-Speed Machining
Precision Hard Turning of Ti6Al4V Using Polycrystalline Diamond Inserts: Surface Quality, Cutting Temperature and Productivity in Conventional and High-Speed Machining
This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining...
Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining
Predictive Analytical Modeling of Thermo-Mechanical Effects in Orthogonal Machining
Factor relationships in a machining system do not work in pairs. Varying the cutting parameters, materials machined, or volumes produced will influence many machining characteristi...
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication
Flood cooling is primarily used to cool and lubricate the cutting tool and workpiece interface during a machining process. But the adverse health effects caused by the use of flood...
Comparative study of near-infrared pulsed laser machining of carbon fiber reinforced plastics
Comparative study of near-infrared pulsed laser machining of carbon fiber reinforced plastics
<p>Carbon fiber-reinforced plastics (CFRPs) have gained widespread popularity as a lightweight, high-strength alternative to traditional materials. The unique anisotropic pro...
Adaptive CNC Machining Process Optimization of Near- net- shaped Blade based on Machining Error data Flow Control
Adaptive CNC Machining Process Optimization of Near- net- shaped Blade based on Machining Error data Flow Control
Abstract
Adaptive CNC machining process is one of the efficient processing solution for near- net- shaped blade, this study proposes an adaptive computer numerical control ...
Adaptive CNC machining process optimization of near- net- shaped blade based on machining error data flow control
Adaptive CNC machining process optimization of near- net- shaped blade based on machining error data flow control
Abstract
Adaptive CNC machining process is one of the efficient processing methods for near- net- shaped blade, this study proposes an adaptive CNC machining process optimi...
Optimisation of variation coolant system techniques in machining aluminium alloy Al319
Optimisation of variation coolant system techniques in machining aluminium alloy Al319
Cutting parameters are often chosen for machining by machine operators in the industry. The experience and efficiency of the machine operator in producing a quality product are fre...
Cutting Force and Friction Modelling in High Speed End-Milling
Cutting Force and Friction Modelling in High Speed End-Milling
Temperature field in metal cutting process is one of the most important phenomena in machining process. Temperature rise in machining directly or indirectly determines other cuttin...


