Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Geodetic Precession of the Sun, Solar System Planets, and their Satellites

View through CrossRef
Abstract The effect of the geodetic precession is the most significant relativistic effect in the rotation of celestial bodies. In this article, the new geodetic precession values for the Sun, the Moon, and the Solar System planets have been improved over the previous version by using more accurate rotational element values. For the first time, the relativistic effect of the geodetic precession for some planetary satellites (J1–J4, S1–S6, S8–S18, U1–U15, N1, and N3–N8) with known quantities of the rotational elements was studied in this research. The calculations of the values of this relativistic effect were carried out by the method for studying any bodies of the Solar System with long-time ephemeris. As a result, the values of the geodetic precession were first determined for the Sun, planets in their rotational elements, and for the planetary satellites in the Euler angles relative to their proper coordinate systems and in their rotational elements. In this study, with respect to the previous version, additional and corrected values of the relativistic influence of Martian satellites (M1 and M2) on Mars were calculated. The largest values of the geodetic rotation of bodies in the Solar System were found in Jovian satellite system. Further, in decreasing order, these values were found in the satellite systems of Saturn, Neptune, Uranus, and Mars, for Mercury, for Venus, for the Moon, for the Earth, for Mars, for Jupiter, for Saturn, for Uranus, for Neptune, and for the Sun. First of all, these are the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14) and the satellites of Saturn: Pan (S18), Atlas (S15), Prometheus (S16), Pandora (S17), Epimetheus (S11), Janus (S10), and Mimas (S1), whose values of geodetic precession are comparable to the values of their precession. The obtained numerical values for the geodetic precession for the Sun, all the Solar System planets, and their satellites (E1, M1, M2, J1–J5, J14–J16, S1–S6, S8–S18, U1–U15, N1, and N3–N8) can be used to numerically study their rotation in the relativistic approximation and can also be used to estimate the influence of relativistic effects on the orbital–rotational dynamics of bodies of exoplanetary systems.
Title: Geodetic Precession of the Sun, Solar System Planets, and their Satellites
Description:
Abstract The effect of the geodetic precession is the most significant relativistic effect in the rotation of celestial bodies.
In this article, the new geodetic precession values for the Sun, the Moon, and the Solar System planets have been improved over the previous version by using more accurate rotational element values.
For the first time, the relativistic effect of the geodetic precession for some planetary satellites (J1–J4, S1–S6, S8–S18, U1–U15, N1, and N3–N8) with known quantities of the rotational elements was studied in this research.
The calculations of the values of this relativistic effect were carried out by the method for studying any bodies of the Solar System with long-time ephemeris.
As a result, the values of the geodetic precession were first determined for the Sun, planets in their rotational elements, and for the planetary satellites in the Euler angles relative to their proper coordinate systems and in their rotational elements.
In this study, with respect to the previous version, additional and corrected values of the relativistic influence of Martian satellites (M1 and M2) on Mars were calculated.
The largest values of the geodetic rotation of bodies in the Solar System were found in Jovian satellite system.
Further, in decreasing order, these values were found in the satellite systems of Saturn, Neptune, Uranus, and Mars, for Mercury, for Venus, for the Moon, for the Earth, for Mars, for Jupiter, for Saturn, for Uranus, for Neptune, and for the Sun.
First of all, these are the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14) and the satellites of Saturn: Pan (S18), Atlas (S15), Prometheus (S16), Pandora (S17), Epimetheus (S11), Janus (S10), and Mimas (S1), whose values of geodetic precession are comparable to the values of their precession.
The obtained numerical values for the geodetic precession for the Sun, all the Solar System planets, and their satellites (E1, M1, M2, J1–J5, J14–J16, S1–S6, S8–S18, U1–U15, N1, and N3–N8) can be used to numerically study their rotation in the relativistic approximation and can also be used to estimate the influence of relativistic effects on the orbital–rotational dynamics of bodies of exoplanetary systems.

Related Results

The upper connected edge geodetic number of a graph
The upper connected edge geodetic number of a graph
For a non-trivial connected graph G, a set S ? V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The...
Solar Trackers Using Six-Bar Linkages
Solar Trackers Using Six-Bar Linkages
Abstract A solar panel faces the sun or has the solar ray normal to its face to enhance power reaping. A fixed solar panel can only meet this condition at one moment...
Interior dynamics of small-core and coreless exoplanets
Interior dynamics of small-core and coreless exoplanets
Since the first exoplanet detection in 1992, the study of exoplanets has received considerable attention. It is becoming apparent that the diversity of the general exoplanet popula...
Space weather impacts on Geodesy
Space weather impacts on Geodesy
<p>Space Weather refers to events on the Sun that have an impact on terrestrial technologies and man-made satellites. The Global Navigation Satellite System (GNSS) is...
Relativistic Effects in the Rotation of Jupiter’s Inner Satellites
Relativistic Effects in the Rotation of Jupiter’s Inner Satellites
Abstract The most significant relativistic effects (the geodetic precession and the geodetic nutation, which consist of the effect of the geodetic rotation) in the r...
Solar irradiance estimation for planetary studies
Solar irradiance estimation for planetary studies
Solar irradiance is the main source of energy input to the planets of the Solar System. The solar rotation and the evolution of active regions on the surface of the Sun are two of ...
Dynamics of giant planets in protoplanetary discs
Dynamics of giant planets in protoplanetary discs
New instruments such as the ALMA interferometer and SPHERE on VLT allowed to obtain a large number of high-resolution images of protoplanetary discs. In these images, substructures...
Analisis Pembelajaran Ilmu Pengetahuan Alam Pada Materi Sistem Tata Surya di Sekolah Dasar
Analisis Pembelajaran Ilmu Pengetahuan Alam Pada Materi Sistem Tata Surya di Sekolah Dasar
This research is a data collection technique in this research using literature study. The library study collection technique is a study used to collect data and information with va...

Back to Top