Javascript must be enabled to continue!
Cofactor Metabolic Engineering of Escherichia coli for Aerobic L-Malate Production with Lower CO2 Emissions
View through CrossRef
Escherichia coli has been engineered for L-malate production via aerobic cultivation. However, the maximum yield obtained through this mode is inferior to that of anaerobic fermentation due to massive amounts of CO2 emissions. Here, we aim to address this issue by reducing CO2 emissions of recombinant E. coli during aerobic L-malate production. Our findings indicated that NADH oxidation and ATP-synthesis-related genes were down-regulated with 2 g/L of YE during aerobic cultivations of E. coli E23, as compared to 5 g/L of YE. Then, E23 was engineered via the knockout of nuoA and the introduction of the nonoxidative glycolysis (NOG) pathway, resulting in a reduction of NAD+ and ATP supplies. The results demonstrate that E23 (ΔnuoA, NOG) exhibited decreased CO2 emissions, and it produced 21.3 g/L of L-malate from glucose aerobically with the improved yield of 0.43 g/g. This study suggests that a restricted NAD+ and ATP supply can prompt E. coli to engage in incomplete oxidization of glucose, leading to the accumulation of metabolites instead of utilizing them in cellular respiration.
Title: Cofactor Metabolic Engineering of Escherichia coli for Aerobic L-Malate Production with Lower CO2 Emissions
Description:
Escherichia coli has been engineered for L-malate production via aerobic cultivation.
However, the maximum yield obtained through this mode is inferior to that of anaerobic fermentation due to massive amounts of CO2 emissions.
Here, we aim to address this issue by reducing CO2 emissions of recombinant E.
coli during aerobic L-malate production.
Our findings indicated that NADH oxidation and ATP-synthesis-related genes were down-regulated with 2 g/L of YE during aerobic cultivations of E.
coli E23, as compared to 5 g/L of YE.
Then, E23 was engineered via the knockout of nuoA and the introduction of the nonoxidative glycolysis (NOG) pathway, resulting in a reduction of NAD+ and ATP supplies.
The results demonstrate that E23 (ΔnuoA, NOG) exhibited decreased CO2 emissions, and it produced 21.
3 g/L of L-malate from glucose aerobically with the improved yield of 0.
43 g/g.
This study suggests that a restricted NAD+ and ATP supply can prompt E.
coli to engage in incomplete oxidization of glucose, leading to the accumulation of metabolites instead of utilizing them in cellular respiration.
Related Results
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Abstract
Introduction
Hospitals are high-risk environments for infections. Despite the global recognition of these pathogens, few studies compare microorganisms from community-acqu...
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Naturally occurring CO2 reservoirs across the USA are critical natural analogues of long-term CO2 storage in the subsurface over geological timescales and provide valuable insights...
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Abstract
Numerous CO2 injection pipeline applications have been developed and implemented in the past decades in the UAE and all around the globe. Transporting the C...
A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions
A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions
The trends of consumption-based emissions in China have a major impact on global greenhouse gas (GHG) emissions. Previous studies have only focused on China’s energy-related consum...
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Abstract
Recent studies have indicted that more than 40 billion barrels of additional oil can be produced economically with CO2-EOR for a low CO2 capture cost and an...
TRANSFORMASI PLASMID YANG MENGANDUNG GEN merB PADA Escherichia coli BL21(DE3)
TRANSFORMASI PLASMID YANG MENGANDUNG GEN merB PADA Escherichia coli BL21(DE3)
ABSTRACTDNA transformation is one of the methods for inserting DNA into bacterial cells. The current transformation method is widely used to transfer plasmids containing genetic ma...
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Abstract
This paper aims to clarify the mechanism and feasibility of carbon dioxide (CO2) injection into carbonate gas reservoirs to enhance recovery and evaluate it...
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Using carbon dioxide for enhance oil recovery (EOR) has attracted a great deal of attention as the world grapples with the twin challenges of improving oil recovery from mature oil...

