Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Optical properties of Eu3+ - doped Sr2TiO4 phosphor powder synthesised by solid-phase reaction method

View through CrossRef
Fluorescent powder Sr2TiO4 doped with Eu3+ ions was synthesised by the solid-phase reaction method with a sintering temperature of 1200oC in the air with a 1-6% doping concentration. The resulting material has a perovskite structure of I4/mmm space group, and the Eu3+ ion doping concentration does not change the material’s structure. This characteristic space group of the material was also investigated through the Raman scattering spectrum with characteristic peaks at positions 145, 240, 448, and 699 cm-1 corresponding to vibrational modes with 2A1g + 2Egcharacteristic states of Sr2TiO4 material. The results showed that the material absorbs strongly in the ultraviolet and blue light regions with characteristic peaks of the Sr2TiO4 matrix and Eu3+ ions to emit strongly in the red light region with characteristic emission peaks of Eu3+ ions in the background network when moving from the excited state 5D0 to state 7Fj (j is a positive integer number). Fluorescence quenching was also observed at a doping concentration of 4% Eu3+ ions. The fabricated material is suitable for coating applications on nUV-LED LED chips.
Title: Optical properties of Eu3+ - doped Sr2TiO4 phosphor powder synthesised by solid-phase reaction method
Description:
Fluorescent powder Sr2TiO4 doped with Eu3+ ions was synthesised by the solid-phase reaction method with a sintering temperature of 1200oC in the air with a 1-6% doping concentration.
The resulting material has a perovskite structure of I4/mmm space group, and the Eu3+ ion doping concentration does not change the material’s structure.
This characteristic space group of the material was also investigated through the Raman scattering spectrum with characteristic peaks at positions 145, 240, 448, and 699 cm-1 corresponding to vibrational modes with 2A1g + 2Egcharacteristic states of Sr2TiO4 material.
The results showed that the material absorbs strongly in the ultraviolet and blue light regions with characteristic peaks of the Sr2TiO4 matrix and Eu3+ ions to emit strongly in the red light region with characteristic emission peaks of Eu3+ ions in the background network when moving from the excited state 5D0 to state 7Fj (j is a positive integer number).
Fluorescence quenching was also observed at a doping concentration of 4% Eu3+ ions.
The fabricated material is suitable for coating applications on nUV-LED LED chips.

Related Results

Screening of color phosphor powders on CRT faceplates
Screening of color phosphor powders on CRT faceplates
Abstract— We studied the screening of color phosphor powders on CRT faceplates by photolithography. For photolithography, the phosphor particles should disperse perfectly in the dr...
Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs
Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs
Generally, the Eu3+-activated red phosphors suffer narrow 4f-4f excitation lines ranging from near-UV to blue part of the spectrum, resulting in poor spectral overlapping with the ...
Synthesis and Photoluminescence Properties of Eu3+-Doped Na2YMg2V3O12: A Novel Red-Emitting Phosphor for White-Light-Emitting Diodes
Synthesis and Photoluminescence Properties of Eu3+-Doped Na2YMg2V3O12: A Novel Red-Emitting Phosphor for White-Light-Emitting Diodes
Abstract The fabrication and luminescent properties of novel Na2YMg2V3O12:Eu3+ phosphors produced by conventional solid-state reactions were investigated. Self-activated em...
Tunable warm white light emission and energy transfer of Dy3+ co‐doped Sr2LaZrO5.5:Eu3+ phosphors
Tunable warm white light emission and energy transfer of Dy3+ co‐doped Sr2LaZrO5.5:Eu3+ phosphors
AbstractEu3+,Dy3+ co‐doped Sr2LaZrO5.5‐based phosphors were prepared through a sol–gel method. Through characterization, it was found that the Sr2LaZrO5.5‐based fluorescent powder ...
The influences of LaVO4:Eu3+,Cr3+ red phosphors on white light-emitting diode applications
The influences of LaVO4:Eu3+,Cr3+ red phosphors on white light-emitting diode applications
<span>In this present paper, the </span><span lang="EN-ID">LaVO<sub>4</sub>:Eu<sup>3+</sup>,Cr<sup>3+</sup> (</span><...
Fabrication of Ruthenium-Based Cathode Material/Solid Electrolyte Composites
Fabrication of Ruthenium-Based Cathode Material/Solid Electrolyte Composites
Introduction Oxide-based all-solid-state batteries (ASSBs) are considered safe due to their chemical stability and are attracting attention as a pow...
Synthesis, characterization, and photocatalytic activities of Eu3+-doped BiVO4 catalysts
Synthesis, characterization, and photocatalytic activities of Eu3+-doped BiVO4 catalysts
An improved sol-gel technique was utilized to synthesize the Eu3+-doped bismuth vanadate (BiVO4) photocatalysts, resulting in enhanced photocatalytic activity. The photocatalytic p...

Back to Top