Javascript must be enabled to continue!
Machines simulate hydrologic processes using a simple structure but in a unique manner – a case study of predicting fine scale watershed response on a distributed framework
View through CrossRef
An LSTM-based distributed hydrologic model for an urban watershed of Korea was developed. The input of the model is the time series of the 10-minute radar-gauge composite rainfall data and 10-minute temperature data at the 239 model grid cells, and the output of the model is the 10-minute flow discharge at the watershed outlet. The Nash-Sutcliffe Efficiency (NSE) coefficients of the calibration period (2013-2016) and validation period (2017-2019) were 0.99 and 0.67, respectively. Normal events were better predicted than the extreme ones. Further in-depth analyses revealed that: (1) the model composes the watershed outlet flow discharge by linearly superimposing multiple time series created by each of the LSTM units. Unlike conventional hydrologic models, most of these time series greatly fluctuated in both positive and negative domain; (2) the runoff to rainfall ratio of each of the model grid cells does not reflect its counterpart parameters of the conceptual hydrologic models  revealing that the model simulates the watershed responses in a unique manner; (3) the model successfully reproduced the soil-moisture dependent runoff processes, which is an essential prerequisite of continuous hydrologic models; (4) Each of the LSTM units have different temporal sensitivity to a unit rainfall stimulus, and the LSTM units that is sensitive to rainfall input have greater output weight factors nearby the watershed outlet, and vice versa. This means that the model learned a mechanism to separately consider the hydrologic components with distinct response time such as direct runoff and the low frequency baseflow. AcknowledgementThis research was supported by the Basic Science Research Program (Grant Number: 2021R1A2C2003471) and the Basic Research Laboratory Program (Grant Number: 2022R1A4A3032838) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.
Title: Machines simulate hydrologic processes using a simple structure but in a unique manner – a case study of predicting fine scale watershed response on a distributed framework
Description:
An LSTM-based distributed hydrologic model for an urban watershed of Korea was developed.
The input of the model is the time series of the 10-minute radar-gauge composite rainfall data and 10-minute temperature data at the 239 model grid cells, and the output of the model is the 10-minute flow discharge at the watershed outlet.
The Nash-Sutcliffe Efficiency (NSE) coefficients of the calibration period (2013-2016) and validation period (2017-2019) were 0.
99 and 0.
67, respectively.
Normal events were better predicted than the extreme ones.
Further in-depth analyses revealed that: (1) the model composes the watershed outlet flow discharge by linearly superimposing multiple time series created by each of the LSTM units.
Unlike conventional hydrologic models, most of these time series greatly fluctuated in both positive and negative domain; (2) the runoff to rainfall ratio of each of the model grid cells does not reflect its counterpart parameters of the conceptual hydrologic models  revealing that the model simulates the watershed responses in a unique manner; (3) the model successfully reproduced the soil-moisture dependent runoff processes, which is an essential prerequisite of continuous hydrologic models; (4) Each of the LSTM units have different temporal sensitivity to a unit rainfall stimulus, and the LSTM units that is sensitive to rainfall input have greater output weight factors nearby the watershed outlet, and vice versa.
This means that the model learned a mechanism to separately consider the hydrologic components with distinct response time such as direct runoff and the low frequency baseflow.
 AcknowledgementThis research was supported by the Basic Science Research Program (Grant Number: 2021R1A2C2003471) and the Basic Research Laboratory Program (Grant Number: 2022R1A4A3032838) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Multi-order hydrologic position: a high-resolution dataset for the conterminous United States
Multi-order hydrologic position: a high-resolution dataset for the conterminous United States
The location of a point within a stream network can be an important measure in hydrology. Hydrologic position (HP) is defined here by two metrics: lateral position (LP) and distanc...
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract
Introduction
Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Biophysical Characteristics of Medo Watershed, Central Rift Valley Area of Ethiopia
Biophysical Characteristics of Medo Watershed, Central Rift Valley Area of Ethiopia
Abstract
Characterizing the biophysical features at a watershed level have a significant input for further improvements to promote sustainable and productive livelihood thr...
Future Water Availability: Impacts of Climate Change and Water Demand
Future Water Availability: Impacts of Climate Change and Water Demand
Global climate change can alter precipitation patterns and temperatures, impacting regional hydrologic cycles and river flows, potentially leading to supply deficits during peak us...
Water balance analysis of Talau-Loes Watershed, a cross border watershed of Indonesia and East Timor
Water balance analysis of Talau-Loes Watershed, a cross border watershed of Indonesia and East Timor
Abstract. Riwu-Kaho M, Mella WII, Mau YS, Riwu-Kaho NPLB, Nur MSM. 2020. Water balance analysis of Talau-Loes Watershed, a cross border watershed of Indonesia and East Timor. Trop ...
Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies
Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies
AbstractHydrologic metrics have been used extensively in ecology and hydrology to summarize the characteristics of riverine flow regimes at various temporal scales but there has be...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...


