Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

NRF2 Activation by Nitrogen Heterocycles: A Review

View through CrossRef
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural–activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.
Title: NRF2 Activation by Nitrogen Heterocycles: A Review
Description:
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety.
Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs.
The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation.
Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities.
NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases.
A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases.
Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural–activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.

Related Results

A Stress-Responsive Transcriptional Factor NRF2 Activates Hematopoietic Stem Cells
A Stress-Responsive Transcriptional Factor NRF2 Activates Hematopoietic Stem Cells
Abstract KEAP1-NRF2 system is a major regulator of cellular redox balance and xenobiotic metabolism. NRF2 is an inducible transcription factor, and KEAP1 is its nega...
Trilobatin targets Nrf2 to ameliorate lipopolysaccharide-induced depressive-like behavior: Involvment of microbiota-gut-brain axis
Trilobatin targets Nrf2 to ameliorate lipopolysaccharide-induced depressive-like behavior: Involvment of microbiota-gut-brain axis
Abstract Background and Purpose: Activation of Nrf2 holds great promise for treating major depressive disorder (MDD). Trilobatin (TLB) is a naturally occurring food additive confer...
Abstract 391: Role of NRF2 in HIF-2α-mediated cancer stem cell phenotype
Abstract 391: Role of NRF2 in HIF-2α-mediated cancer stem cell phenotype
Abstract The acquisition of cancer stem cell (CSC) properties is influenced by the microenvironment, with tumor hypoxia playing a pivotal role. Elevated levels of nu...
Abstract 436: NRF2 activity impairs the efficacy of sotorasib in human KRAS-mutant lung adenocarcinoma
Abstract 436: NRF2 activity impairs the efficacy of sotorasib in human KRAS-mutant lung adenocarcinoma
Abstract Lung cancer continues to be the leading cause of cancer-related mortality in the United States, with lung adenocarcinoma (LUAD) representing the most common...
N6-methyladenosine-mediated Nrf2 Regulates the Defense Mechanism Against PM2.5-induced Pulmonary Fibrosis
N6-methyladenosine-mediated Nrf2 Regulates the Defense Mechanism Against PM2.5-induced Pulmonary Fibrosis
Abstract Background: It has been reported that particulate matter with an aerodynamic diameter of < 2.5 µm (PM2.5) could induce epithelial–mesenchymal transition (EMT)- ...
A Mechanism Study on the Antioxidant Pathway of Keap1-Nrf2- ARE Inhibiting Ferroptosis in Dopaminergic Neurons
A Mechanism Study on the Antioxidant Pathway of Keap1-Nrf2- ARE Inhibiting Ferroptosis in Dopaminergic Neurons
Background: The pathology of Parkinson's disease (PD) indicates that iron deposition exists in dopaminergic neurons, which may be related to the death of cellular lipid iron peroxi...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Electrochemistry of Heterocycles
Electrochemistry of Heterocycles
Abstract The sections in this article are Overview on the Electrochemistry of Heterocycles Electrosyntheses of Heterocyc...

Back to Top