Javascript must be enabled to continue!
Neuroactive Steroid–Gut Microbiota Interaction in T2DM Diabetic Encephalopathy
View through CrossRef
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography–tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.
Title: Neuroactive Steroid–Gut Microbiota Interaction in T2DM Diabetic Encephalopathy
Description:
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia.
Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored.
On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography–tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing.
Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported.
Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels.
Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.
Related Results
The Microbiota and Microbiome in COVID-19 in Adults and Children and Potential Therapeutic Interventions: A Review
The Microbiota and Microbiome in COVID-19 in Adults and Children and Potential Therapeutic Interventions: A Review
The work presented is a comprehensive review of the role of the human microbiota in the context of the COVID-19 pandemic. A diverse microbial community heavily colonizes the human ...
Clinical research for the significance of inflammatory factors and adiponectin in type 2 diabetes complicated with non-alcoholic fatty liver disease
Clinical research for the significance of inflammatory factors and adiponectin in type 2 diabetes complicated with non-alcoholic fatty liver disease
Objective
To investigate the clinical significance of inflammatory factors and adiponectin in type 2 diabetes milletus complicated with non-alcoholic fatty liver ...
Causal relationship between gut microbiota and malignant lymphoma:a two-way two-sample Mendelian randomization study
Causal relationship between gut microbiota and malignant lymphoma:a two-way two-sample Mendelian randomization study
Abstract
Background
The significance of gut microbiota in human health is gaining attention, leading to a rise in observational and clinical studies focused on understandi...
Comparative study of the gut microbiota in three captive Rhinopithecus species
Comparative study of the gut microbiota in three captive Rhinopithecus species
Abstract
Background
Snub-nosed monkeys are highly endangered primates and their population continues to decline with the habitat fragmentation. Arti...
Influence of Inflammation, Gut Microbiota, and Stress on Cognition and Oral Health Therapies
Influence of Inflammation, Gut Microbiota, and Stress on Cognition and Oral Health Therapies
Background:
Prolonged or repeated psychological stress triggers dental and orthodontic diseases
via inflammatory pathways and oxidative stress. This review aims to elucidate the ro...
Diversity analysis of oral and gut microbiota in osteoporotic rats
Diversity analysis of oral and gut microbiota in osteoporotic rats
The oral and gut microbiota had been shown to control bone metabolism and have a strong correlation with osteoporosis. However, to reveal the oral and gut bacteria characteristics ...
(051) Gut Microbiota and Sexual Desire Disorder in Women
(051) Gut Microbiota and Sexual Desire Disorder in Women
Abstract
Introduction
Hyposexual desire disorder (HSDD) is a common female sexual health problem. HSDD mainly refers to women's ...
Interactions between mycotoxins and gut microbiota in chickens - review
Interactions between mycotoxins and gut microbiota in chickens - review
This article briefly highlights the complex relationships between the chicken gastrointestinal tract (GIT) microbial communities and mycotoxins. The gut microbiota, the diverse com...

