Javascript must be enabled to continue!
Detection of S2− in Water by a Glucose Enhanced Water-Soluble Fluorescent Bioprobe
View through CrossRef
That sulfide anions (S2−) in aquatic environments are produced by microorganisms through degrading sulfur-containing proteins and other organics are harmful to human health. Thus, it is of significance to develop a convenient method for the detection of S2− in water. Small molecular fluorescent probes are very popular for their advantages of visualization, real-time, high sensitivity, and convenience. However, low solubility in water limits the application of existing S2− probes. In this work, we found that our previously developed water-soluble glycosylated fluorescent bioprobe Cu[GluC] can achieve detection of S2− in water. Cu[GluC] can restore fluorescence within 20 s when it encounters S2− and shows good sensitivity towards S2− with a detection limit of 49.6 nM. Besides, Cu[GluC] derived fluorescent test strips were obtained by immersion and realized conveniently visual S2− detection in water by coupling with a UV lamp and a smartphone app. This work provides a fluorescent bioprobe with good water solubility as well as its derived fluorescent test strip for sensitive and simple detection of S2− in water, which shows good prospects in on-site water quality monitoring.
Title: Detection of S2− in Water by a Glucose Enhanced Water-Soluble Fluorescent Bioprobe
Description:
That sulfide anions (S2−) in aquatic environments are produced by microorganisms through degrading sulfur-containing proteins and other organics are harmful to human health.
Thus, it is of significance to develop a convenient method for the detection of S2− in water.
Small molecular fluorescent probes are very popular for their advantages of visualization, real-time, high sensitivity, and convenience.
However, low solubility in water limits the application of existing S2− probes.
In this work, we found that our previously developed water-soluble glycosylated fluorescent bioprobe Cu[GluC] can achieve detection of S2− in water.
Cu[GluC] can restore fluorescence within 20 s when it encounters S2− and shows good sensitivity towards S2− with a detection limit of 49.
6 nM.
Besides, Cu[GluC] derived fluorescent test strips were obtained by immersion and realized conveniently visual S2− detection in water by coupling with a UV lamp and a smartphone app.
This work provides a fluorescent bioprobe with good water solubility as well as its derived fluorescent test strip for sensitive and simple detection of S2− in water, which shows good prospects in on-site water quality monitoring.
Related Results
Bioinformatics Analysis of Gefitinib or Rapamycin on Inhibiting the Survival of Hela in the Low Glucose and High Lactic Acid Environment
Bioinformatics Analysis of Gefitinib or Rapamycin on Inhibiting the Survival of Hela in the Low Glucose and High Lactic Acid Environment
Objective: To explore on the antitumor effect of gefitinib and rapamycin and possible mechanism in normal glucose and high lactic acid microenvironment. Methods: Hela cells are cul...
CUT-OFF POINT FOR FASTING GLUCOSE IN DIAGNOSING PREDIABETES
CUT-OFF POINT FOR FASTING GLUCOSE IN DIAGNOSING PREDIABETES
Objective. This study aimed to evaluate the feasibility of using fasting glucose as a primary diagnostic criterion for prediabetes, and to determine the optimal cut-off point for d...
Synthesis of a Ni–TiO2 Nanocomposite as an Enzyme–Less, Amperometric Sensor for Glucose Sensing & Monitoring
Synthesis of a Ni–TiO2 Nanocomposite as an Enzyme–Less, Amperometric Sensor for Glucose Sensing & Monitoring
In 1994, the Center for Disease Control declared that diabetes had reached epidemic proportions. Since then, however, little has been done to suppress the yearly increasing statist...
Marine fishes exhibit exceptional variation in biofluorescent emission spectra
Marine fishes exhibit exceptional variation in biofluorescent emission spectra
AbstractBiofluorescence is a phylogenetically widespread phenomenon among marine fishes, yet the phenotypic diversity in fluorescent emission wavelengths (e.g., green, red) remains...
Abstract 1133: Glucose deprivation-induced intracellular reactive oxygen species activates the PI3K-AKT axis
Abstract 1133: Glucose deprivation-induced intracellular reactive oxygen species activates the PI3K-AKT axis
Abstract
Glucose is the most efficient energy source and various cancer cells depend on glycolysis for their energy production. On the other hand, tumor microenviron...
Glucose intolerance is associated with resting heart rate among individuals without diabetes
Glucose intolerance is associated with resting heart rate among individuals without diabetes
Elevated resting heart rate is associated with cardiovascular diseases and all-cause mortality. Unmanaged diabetes is associated with high blood pressure and high resting heart rat...
Glutamate dehydrogenase 1 mediated glutaminolysis sustains HCC cells proliferation and survival under glucose deprivation
Glutamate dehydrogenase 1 mediated glutaminolysis sustains HCC cells proliferation and survival under glucose deprivation
Abstract
Background: It is generally believed that tumor cells could sustain its proliferation and survival under different nutrient status according to a so-called metabol...
New and simple Ohmic definition of insulin resistance in lean and obese subjects
New and simple Ohmic definition of insulin resistance in lean and obese subjects
objective:: Insulin enhances the influx of glucose into cells. However, the relationship between glucose and insulin is complex and insulin sensitivity varies widely with age, ethn...

