Javascript must be enabled to continue!
QuikSCAT scatterometer wind data impact on tropical cyclone
View through CrossRef
lkj & bl v/;;u esa eslksLdsy fun’kZ ¼,e- ,e- 5½ dk mi;ksx djrs gq, m".kdfVca/kh; pØokr fo’ys"k.kksa vkSj iwokZuqekuksa ij fDodLdsV LdsVªksehVj vk¡dM+ksa ds ldkjkRed izHkko dk mYys[k fd;k x;k gSA fDodLdsV ds vk¡dM+s fo’ks"k :i ls blfy, Hkh ewY;oku gSa D;kasfd os m".kdfVca/kh; pØokrksa ds eqf’dy ls izkIr gksus okys vk¡dM+ksa ds {ks=ksa esa gh ugha cfYd es?kkPNUu vkSj o"kkZ dh fLFkfr;ksa esa Hkh miyC/k jgrs gSaA bl v/;;u ds fy, mi;ksx fd;k x;k fun’kZ ,e- ,e- 5 ik¡poha ih<+h ds ,u- lh- ,- vkj- @ isu LVsV eslksLdsy fun’kZ ds uke ls tkuk tkrk gSA fDodLdsV LdsVªªksehVj iou vk¡dM+ksa ds izHkko dks le>us vkSj mldh tk¡p djus ds fy, 1999 ls 2003 dh vof/k ds nkSjku dqN m".kdfVca/kh; pØokrksa ds fy, LdsVªªksehVj vk¡dM+ksa dk lekos’ku lfgr vkSj fcuk lekos’ku ds izfr:i.k fd;k x;k gSA pØokrh fLFkfr gsrq ml le; fo|eku dqN iksrksa ij fy, x, vk¡dM+sa vkSj dqN rVh; vFkok }hiksa ds dsUnzksa ij izkIr fd, x, vk¡dM+sa gh miyC/k gSaA izs{k.k }kjk izkIr fd, x, vk¡dM+ksa dk ,e- ,e- 5 esa lfEefyr djus ds fy, vyx&vyx le;ksa ij fy, x, fDodLdsV ds dqN iklsa miyC/k gSaA vk¡dM+ksa dks lfEefyr djus ds fy, bu vfrfjDr vk¡dM+ksa ls izkjEHk esa fy, x, vk¡dMksa esa o`f) gqbZ gSA buls izkIr gq, ifj.kkeksa ls ;g irk pyk gS fd LdsVªªksehVj vk¡dM+ksa ds lekos’ku ls izkjfEHkd {ks= okLrfod fLFkfr ds vf/kd fudV FkkA iwokZuqeku tk¡p ls ;g Hkh irk pyk gS fd mixzg ls izkIr fd, x, vk¡dM+ksa ds lekos’ku ls 48 ?kaVs dh vof/k rd dk iwokZuqeku nsus esa lq/kkj gqvk gSA
This study describes the positive impact of QuikSCAT Scatterometer data on tropical cyclone analyses and forecasts using a Mesoscale Model (MM5). QuikSCAT data is especially valuable because they are available in the data sparse genesis regions of tropical cyclones, and because they are available in cloudy and rainy conditions. The model used in the study, MM5 is known as fifth generation NCAR/Penn State Mesoscale model (MM5). In order to understand and investigate the impact of QuikSCAT Scatterometer wind data, simulation with and without assimilation of scatterometer data has been performed for a few tropical cyclone cases during the period 1999 to 2003. For a cyclonic situation, data of few ships of opportunity and of some coastal or island stations are only available. For the assimilation of observed data into MM5, a few passes of QuikSCAT at different times are available. These additional data strengthen the initial data for assimilation. The results showed that the initial field with the inclusion of scatterometer data was nearer to the actual situation. In the prediction experiment, it was also shown that the inclusion of satellite data improved the prediction up to 48 hrs.
Title: QuikSCAT scatterometer wind data impact on tropical cyclone
Description:
lkj & bl v/;;u esa eslksLdsy fun’kZ ¼,e- ,e- 5½ dk mi;ksx djrs gq, m".
kdfVca/kh; pØokr fo’ys"k.
kksa vkSj iwokZuqekuksa ij fDodLdsV LdsVªksehVj vk¡dM+ksa ds ldkjkRed izHkko dk mYys[k fd;k x;k gSA fDodLdsV ds vk¡dM+s fo’ks"k :i ls blfy, Hkh ewY;oku gSa D;kasfd os m".
kdfVca/kh; pØokrksa ds eqf’dy ls izkIr gksus okys vk¡dM+ksa ds {ks=ksa esa gh ugha cfYd es?kkPNUu vkSj o"kkZ dh fLFkfr;ksa esa Hkh miyC/k jgrs gSaA bl v/;;u ds fy, mi;ksx fd;k x;k fun’kZ ,e- ,e- 5 ik¡poha ih<+h ds ,u- lh- ,- vkj- @ isu LVsV eslksLdsy fun’kZ ds uke ls tkuk tkrk gSA fDodLdsV LdsVªªksehVj iou vk¡dM+ksa ds izHkko dks le>us vkSj mldh tk¡p djus ds fy, 1999 ls 2003 dh vof/k ds nkSjku dqN m".
kdfVca/kh; pØokrksa ds fy, LdsVªªksehVj vk¡dM+ksa dk lekos’ku lfgr vkSj fcuk lekos’ku ds izfr:i.
k fd;k x;k gSA pØokrh fLFkfr gsrq ml le; fo|eku dqN iksrksa ij fy, x, vk¡dM+sa vkSj dqN rVh; vFkok }hiksa ds dsUnzksa ij izkIr fd, x, vk¡dM+sa gh miyC/k gSaA izs{k.
k }kjk izkIr fd, x, vk¡dM+ksa dk ,e- ,e- 5 esa lfEefyr djus ds fy, vyx&vyx le;ksa ij fy, x, fDodLdsV ds dqN iklsa miyC/k gSaA vk¡dM+ksa dks lfEefyr djus ds fy, bu vfrfjDr vk¡dM+ksa ls izkjEHk esa fy, x, vk¡dMksa esa o`f) gqbZ gSA buls izkIr gq, ifj.
kkeksa ls ;g irk pyk gS fd LdsVªªksehVj vk¡dM+ksa ds lekos’ku ls izkjfEHkd {ks= okLrfod fLFkfr ds vf/kd fudV FkkA iwokZuqeku tk¡p ls ;g Hkh irk pyk gS fd mixzg ls izkIr fd, x, vk¡dM+ksa ds lekos’ku ls 48 ?kaVs dh vof/k rd dk iwokZuqeku nsus esa lq/kkj gqvk gSA
This study describes the positive impact of QuikSCAT Scatterometer data on tropical cyclone analyses and forecasts using a Mesoscale Model (MM5).
QuikSCAT data is especially valuable because they are available in the data sparse genesis regions of tropical cyclones, and because they are available in cloudy and rainy conditions.
The model used in the study, MM5 is known as fifth generation NCAR/Penn State Mesoscale model (MM5).
In order to understand and investigate the impact of QuikSCAT Scatterometer wind data, simulation with and without assimilation of scatterometer data has been performed for a few tropical cyclone cases during the period 1999 to 2003.
For a cyclonic situation, data of few ships of opportunity and of some coastal or island stations are only available.
For the assimilation of observed data into MM5, a few passes of QuikSCAT at different times are available.
These additional data strengthen the initial data for assimilation.
The results showed that the initial field with the inclusion of scatterometer data was nearer to the actual situation.
In the prediction experiment, it was also shown that the inclusion of satellite data improved the prediction up to 48 hrs.
Related Results
The Influence Of Atmosphere On Tropical Cyclone Freddy In The Lesser Sunda Islands
The Influence Of Atmosphere On Tropical Cyclone Freddy In The Lesser Sunda Islands
Indonesia frequently experiences atmospheric phenomena form Tropical Cyclone annually due to its geographical location situated in tropical regions. The occurrence of Tropical Cycl...
Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data
Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data
Combined with the multiple solution scheme (MSS) and the rain considered Geophysical model function (GMF+Rain), the two-dimensional variational (2DVAR) ambiguity removal technique ...
Synoptic analysis of Cyclone Ianos via surface, satellite and reanalysis data
Synoptic analysis of Cyclone Ianos via surface, satellite and reanalysis data
<p>Mediterranean Tropical-like Cyclones, or commonly named as medicanes are a special type of cyclone over the Mediterranean Sea. These cyclones are quite similar to ...
Antecedents for the Shapiro–Keyser Cyclone Model in the Bergen School Literature
Antecedents for the Shapiro–Keyser Cyclone Model in the Bergen School Literature
AbstractTwo widely accepted conceptual models of extratropical cyclone structure and evolution exist: the Norwegian and Shapiro–Keyser cyclone models. The Norwegian cyclone model w...
Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT Data
Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT Data
Climate change and hydrological cycles can critically impact future water resources. Uncertainties in current climate models result in disagreement on the amount of water resources...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background:
In a wind farm, the wind speed of the downstream wind turbine will be
lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Analysis of Onboard Verification Flight Test for the Salinity Satellite Scatterometer
Analysis of Onboard Verification Flight Test for the Salinity Satellite Scatterometer
The upcoming Salinity Satellite, scheduled for launch in 2024, will feature the world’s first phased array radar scatterometer. To validate its capability in measuring ocean surfac...
Global climatalogy of cyclone clustering
Global climatalogy of cyclone clustering
<p><span>Cyclone clustering, the succession of multiple extratropical cyclones during a short period of time, has a huge impact on European weather extr...

