Javascript must be enabled to continue!
Interference of the scattered vector light fields from two optically levitated nanoparticles
View through CrossRef
We experimentally study the interference of dipole scattered light from two optically levitated nanoparticles in vacuum, which present an environment free of particle-substrate interactions. We illuminate the two trapped nanoparticles with a linearly polarized probe beam orthogonal to the propagation of the trapping laser beams. The scattered light from the nanoparticles are collected by a high numerical aperture (NA) objective lens and imaged. The interference fringes from the scattered vector light for the different dipole orientations in image and Fourier space are observed. Especially, the interference fringes of two scattered light fields with polarization vortex show the π shift of the interference fringes between inside and outside the center region of the two nanoparticles in the image space. As far as we know, this is the first experimental observation of the interference of scattered vector light fields from two dipoles in free space. This work also provides a simple and direct method to determine the spatial scales between optically levitated nanoparticles by the interference fringes.
Optica Publishing Group
Title: Interference of the scattered vector light fields from two optically levitated nanoparticles
Description:
We experimentally study the interference of dipole scattered light from two optically levitated nanoparticles in vacuum, which present an environment free of particle-substrate interactions.
We illuminate the two trapped nanoparticles with a linearly polarized probe beam orthogonal to the propagation of the trapping laser beams.
The scattered light from the nanoparticles are collected by a high numerical aperture (NA) objective lens and imaged.
The interference fringes from the scattered vector light for the different dipole orientations in image and Fourier space are observed.
Especially, the interference fringes of two scattered light fields with polarization vortex show the π shift of the interference fringes between inside and outside the center region of the two nanoparticles in the image space.
As far as we know, this is the first experimental observation of the interference of scattered vector light fields from two dipoles in free space.
This work also provides a simple and direct method to determine the spatial scales between optically levitated nanoparticles by the interference fringes.
Related Results
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antibiotic resistance amongst bacterial pathogens is a crisis that has been worsening over recent decades, resulting in serious and often fatal infections that cannot be treated by...
Multifunctional Silver Nanoparticles: Synthesis and Applications
Multifunctional Silver Nanoparticles: Synthesis and Applications
Multifunctional silver nanoparticles have attracted widely due to their potential applications. Based on the properties of individual silver nanoparticles, such as plasmonic and an...
Localized nanoscale induction by single domain magnetic particles
Localized nanoscale induction by single domain magnetic particles
AbstractSingle domain magnetic nanoparticles are increasingly investigated as actuators of biological and chemical processes that respond to externally applied magnetic fields. Alt...
Solution-Phase Synthesis of Nanoparticles and Growth Study
Solution-Phase Synthesis of Nanoparticles and Growth Study
<p>This thesis is concerned with solution-phase synthesis of nanoparticles and growth of nanoparticles in solution. A facile synthesis route was developed to produce nanopart...
Revisiting near-threshold photoelectron interference in argon with a non-adiabatic semiclassical model
Revisiting near-threshold photoelectron interference in argon with a non-adiabatic semiclassical model
<sec> <b>Purpose:</b> The interaction of intense, ultrashort laser pulses with atoms gives rise to rich non-perturbative phenomena, which are encoded within th...
Multi-Interference Suppression Network: Joint Waveform and Filter Design for Radar Interference Suppression
Multi-Interference Suppression Network: Joint Waveform and Filter Design for Radar Interference Suppression
With the advancement of electromagnetic interference and counter-interference technology, complex and unpredictable interference signals greatly reduce radar detection, tracking, a...
Preparation and Characterization of Carbon-Encapsulated Iron Nanoparticles and Its Application for Core-Shell Type of Catalyst
Preparation and Characterization of Carbon-Encapsulated Iron Nanoparticles and Its Application for Core-Shell Type of Catalyst
Introduction
Spherical iron oxide and carbon-encapsulated iron nanoparticles have been prepared by ultrasonic irradiation followed by annealing at various temperatur...
Abstract 266: Differential collective cell migratory behaviors modulated by phospholipid nanoparticles
Abstract 266: Differential collective cell migratory behaviors modulated by phospholipid nanoparticles
Abstract
Phospholipid nanoparticles have been actively explored for biological and biomedical applications. These nanoparticles display excellent cargo encapsulation...

