Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Double-Composed Metric Spaces

View through CrossRef
The double-controlled metric-type space (X,D) is a metric space in which the triangle inequality has the form D(η,μ)≤ζ1(η,θ)D(η,θ)+ζ2(θ,μ)D(θ,μ) for all η,θ,μ∈X. The maps ζ1,ζ2:X×X→[1,∞) are called control functions. In this paper, we introduce a novel generalization of a metric space called a double-composed metric space, where the triangle inequality has the form D(η,μ)≤αD(η,θ)+βD(θ,μ) for all η,θ,μ∈X. In our new space, the control functions α,β:[0,∞)→[0,∞) are composed of the metric D in the triangle inequality, where the control functions ζ1,ζ2:X×X→[1,∞) in a double-controlled metric-type space are multiplied with the metric D. We establish some fixed-point theorems along with the examples and applications.
Title: Double-Composed Metric Spaces
Description:
The double-controlled metric-type space (X,D) is a metric space in which the triangle inequality has the form D(η,μ)≤ζ1(η,θ)D(η,θ)+ζ2(θ,μ)D(θ,μ) for all η,θ,μ∈X.
The maps ζ1,ζ2:X×X→[1,∞) are called control functions.
In this paper, we introduce a novel generalization of a metric space called a double-composed metric space, where the triangle inequality has the form D(η,μ)≤αD(η,θ)+βD(θ,μ) for all η,θ,μ∈X.
In our new space, the control functions α,β:[0,∞)→[0,∞) are composed of the metric D in the triangle inequality, where the control functions ζ1,ζ2:X×X→[1,∞) in a double-controlled metric-type space are multiplied with the metric D.
We establish some fixed-point theorems along with the examples and applications.

Related Results

Concerning Fuzzy b-Metric Spaces †
Concerning Fuzzy b-Metric Spaces †
In an article published in 2015, Hussain et al. introduced a notion of a fuzzy b-metric space and obtained some fixed point theorems for this kind of space. Shortly thereafter, Năd...
A comparative study of mappings in metric space and controlled metric space
A comparative study of mappings in metric space and controlled metric space
The objective of this paper is to present a comparative study of mapping in Metric Space and Controlled Metric Space. The study provides the structure, gap analysis and application...
Expansion mapping in controlled metric space and extended B-metric space
Expansion mapping in controlled metric space and extended B-metric space
This paper delves into the intricate study of expansion mappings within the frameworks of controlled metric spaces and extended B-metric spaces. Expansion mappings, known for their...
Riemannian Curvature of a Sliced Contact Metric Manifold
Riemannian Curvature of a Sliced Contact Metric Manifold
Contact geometry become a more important issue in the mathematical world with the works which had done in the 19th century. Many mathematicians have made studies on contact manifol...
Least-squares reverse time migration via linearized waveform inversion using a Wasserstein metric
Least-squares reverse time migration via linearized waveform inversion using a Wasserstein metric
Least-squares reverse time migration (LSRTM), an effective tool for imaging the structures of the earth from seismograms, can be characterized as a linearized waveform inversion pr...
On Modular b-Metrics
On Modular b-Metrics
The notions of modular b-metric and modular b-metric space were introduced by Ege and Alaca as natural generalizations of the well-known and featured concepts of modular metric and...
Double-Controlled Quasi M-Metric Spaces
Double-Controlled Quasi M-Metric Spaces
One of the well-studied generalizations of a metric space is known as a partial metric space. The partial metric space was further generalized to the so-called M-metric space. In t...
A discrete version of the Brunn-Minkowski inequality and its stability
A discrete version of the Brunn-Minkowski inequality and its stability
In the first part of the paper, we define an approximated Brunn-Minkowski inequality which generalizes the classical one for metric measure spaces. Our new definition, based only o...

Back to Top