Javascript must be enabled to continue!
Numerical Modelling of Thermoacoustic Stirling Engines & Refrigerators
View through CrossRef
Thermoacoustic machines depend on the complex relationship between thermodynamics and acoustics, and thus understanding it is vital in order to analyse the working principles and optimise parameters (i.e. geometrical or operational) to improve their performance. This paper investigates how numerical modelling can be used to explore this relationship and compares the accuracy of the performance predictions for different numerical simulation software. The software used included one designed for modelling Stirling machines called ‘Sage’ and one designed for modelling thermoacoustic machines called ‘DeltaEC’. To compare their results a model of both a thermoacoustic Stirling engine and refrigerator were developed from existing models in published papers, which contained experimental data to validate the numerical models. The results from the thermoacoustic Stirling engine model show that there is good agreement between the predictions from DeltaEC and the experimental data, as well as relatively good agreement between the Sage and DeltaEC predictions. However, due to Sage requiring a different approach to model the boundary conditions for the standing wave type machine (i.e. one end closed) the predictions varied slightly from those by DeltaEC. The results from the thermoacoustic Stirling refrigerator model, however, show improved agreement between the predictions from Sage and DeltaEC – potentially due to Sage and DeltaEC using a similar approach to model the boundary conditions for the travelling wave type (i.e. two open ends). Overall, it was found that although both can accurately model travelling wave thermoacoustic machines, the nature of Sage’s solving method makes it more complex to model the standing wave type compared to DeltaEC. A discussion on the use of numerical models as a tool for better understanding thermoacoustic machines, and the importance of the accuracy of the results to allow for optimisation and improvement in their design is presented.
Auckland University of Technology (AUT) Library
Title: Numerical Modelling of Thermoacoustic Stirling Engines & Refrigerators
Description:
Thermoacoustic machines depend on the complex relationship between thermodynamics and acoustics, and thus understanding it is vital in order to analyse the working principles and optimise parameters (i.
e.
geometrical or operational) to improve their performance.
This paper investigates how numerical modelling can be used to explore this relationship and compares the accuracy of the performance predictions for different numerical simulation software.
The software used included one designed for modelling Stirling machines called ‘Sage’ and one designed for modelling thermoacoustic machines called ‘DeltaEC’.
To compare their results a model of both a thermoacoustic Stirling engine and refrigerator were developed from existing models in published papers, which contained experimental data to validate the numerical models.
The results from the thermoacoustic Stirling engine model show that there is good agreement between the predictions from DeltaEC and the experimental data, as well as relatively good agreement between the Sage and DeltaEC predictions.
However, due to Sage requiring a different approach to model the boundary conditions for the standing wave type machine (i.
e.
one end closed) the predictions varied slightly from those by DeltaEC.
The results from the thermoacoustic Stirling refrigerator model, however, show improved agreement between the predictions from Sage and DeltaEC – potentially due to Sage and DeltaEC using a similar approach to model the boundary conditions for the travelling wave type (i.
e.
two open ends).
Overall, it was found that although both can accurately model travelling wave thermoacoustic machines, the nature of Sage’s solving method makes it more complex to model the standing wave type compared to DeltaEC.
A discussion on the use of numerical models as a tool for better understanding thermoacoustic machines, and the importance of the accuracy of the results to allow for optimisation and improvement in their design is presented.
Related Results
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
<p>Νίκος Οικονομίδης</...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">ΠΗΛΙΝΑ ΙΓ&Delta...
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
<p><strong>Introduction:</strong></p>
<p>Pit craters are peculiar depressions found in almost every terrestria...
Un manoscritto equivocato del copista santo Theophilos († 1548)
Un manoscritto equivocato del copista santo Theophilos († 1548)
<p><font size="3"><span class="A1"><span style="font-family: 'Times New Roman','serif'">ΕΝΑ ΛΑΝ&...
Ballistic landslides on comet 67P/Churyumov–Gerasimenko
Ballistic landslides on comet 67P/Churyumov–Gerasimenko
<p><strong>Introduction:</strong></p><p>The slow ejecta (i.e., with velocity lower than escape velocity) and l...
Stress transfer process in doublet events studied by numerical TREMOL simulations: Study case Ometepec 1982 Doublet.
Stress transfer process in doublet events studied by numerical TREMOL simulations: Study case Ometepec 1982 Doublet.
<pre class="western"><span><span lang="en-US">Earthquake doublets are a characteristic rupture <...
Effects of a new land surface parametrization scheme on thermal extremes in a Regional Climate Model
Effects of a new land surface parametrization scheme on thermal extremes in a Regional Climate Model
<p><span>The </span><span>EFRE project Big Data@Geo aims at providing high resolution </span><span&...

