Javascript must be enabled to continue!
The molecular basis of the effect of temperature on enzyme activity
View through CrossRef
Experimental data show that the effect of temperature on enzymes cannot be adequately explained in terms of a two-state model based on increases in activity and denaturation. The Equilibrium Model provides a quantitative explanation of enzyme thermal behaviour under reaction conditions by introducing an inactive (but not denatured) intermediate in rapid equilibrium with the active form. The temperature midpoint (Teq) of the rapid equilibration between the two forms is related to the growth temperature of the organism, and the enthalpy of the equilibrium (ΔHeq) to its ability to function over various temperature ranges. In the present study, we show that the difference between the active and inactive forms is at the enzyme active site. The results reveal an apparently universal mechanism, independent of enzyme reaction or structure, based at or near the active site, by which enzymes lose activity as temperature rises, as opposed to denaturation which is global. Results show that activity losses below Teq may lead to significant errors in the determination of ΔG*cat made on the basis of the two-state (‘Classical’) model, and the measured kcat will then not be a true indication of an enzyme's catalytic power. Overall, the results provide a molecular rationale for observations that the active site tends to be more flexible than the enzyme as a whole, and that activity losses precede denaturation, and provide a general explanation in molecular terms for the effect of temperature on enzyme activity.
Title: The molecular basis of the effect of temperature on enzyme activity
Description:
Experimental data show that the effect of temperature on enzymes cannot be adequately explained in terms of a two-state model based on increases in activity and denaturation.
The Equilibrium Model provides a quantitative explanation of enzyme thermal behaviour under reaction conditions by introducing an inactive (but not denatured) intermediate in rapid equilibrium with the active form.
The temperature midpoint (Teq) of the rapid equilibration between the two forms is related to the growth temperature of the organism, and the enthalpy of the equilibrium (ΔHeq) to its ability to function over various temperature ranges.
In the present study, we show that the difference between the active and inactive forms is at the enzyme active site.
The results reveal an apparently universal mechanism, independent of enzyme reaction or structure, based at or near the active site, by which enzymes lose activity as temperature rises, as opposed to denaturation which is global.
Results show that activity losses below Teq may lead to significant errors in the determination of ΔG*cat made on the basis of the two-state (‘Classical’) model, and the measured kcat will then not be a true indication of an enzyme's catalytic power.
Overall, the results provide a molecular rationale for observations that the active site tends to be more flexible than the enzyme as a whole, and that activity losses precede denaturation, and provide a general explanation in molecular terms for the effect of temperature on enzyme activity.
Related Results
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Characterizations and Fibrinolytic Activity of Serine Protease from Bacillus subtilis C10
Characterizations and Fibrinolytic Activity of Serine Protease from Bacillus subtilis C10
Background:
Fibrinolytic enzymes, such as Nattokinases from Bacillus species are known
to degrade the fibrin blood clots. They belong to serine protease group having commercial app...
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
The aim of this work was to investigate the effects of different culture conditions on the production of poly methyl galacturonase enzyme bySclerotium rolfsii and their optimizatio...
Study on Urban Thermal Environment based on Diurnal Temperature Range
Study on Urban Thermal Environment based on Diurnal Temperature Range
<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter...
SMART TEMPERATURE SENSORS FOR TEMPERATURE CONTROL SYSTEMS
SMART TEMPERATURE SENSORS FOR TEMPERATURE CONTROL SYSTEMS
Temperature control systems are pivotal in various applications, ranging from industrial processes and environmental monitoring to everyday comfort and safety. Smart temperature se...
LYTIC ENZYMES OF SORANGIUM SP.: A COMPARISON OF SOME PHYSICAL PROPERTIES OF THE α- AND β-LYTIC PROTEASES
LYTIC ENZYMES OF SORANGIUM SP.: A COMPARISON OF SOME PHYSICAL PROPERTIES OF THE α- AND β-LYTIC PROTEASES
Ultraviolet absorption spectra of the two enzymes were determined. The β-enzyme has the lower λmax and the higher absorptivity between 260 and 300 mμ. The spectra in 0.1 N alkali –...
Some selected properties of the recombinant aminoacylase from Escherichia coli LGE 36
Some selected properties of the recombinant aminoacylase from Escherichia coli LGE 36
Background: Aminoacylase has seen extensive use in the synthesis of L-amino acids. L-amino acids are widely used in the food and medical industries, as well as in healthcare. The e...
Proteolitic Activity of Marine Strain Bacillus sp. 051
Proteolitic Activity of Marine Strain Bacillus sp. 051
The main interest in the study of marine microorganisms is due to their ability to produce a wide range of unique enzymes, including peptidases with different specificities. In rec...

