Javascript must be enabled to continue!
CFD Based Multi-Disciplinary Optimization Design of High-Performance Deep Sea Seismic Vessel
View through CrossRef
This paper focuses on the application of a ship hull form multi-disciplinary optimization (MDO) system based on the computational fluid dynamics (CFD). Using the iSIGHT software, the MDO system integrates an automatic geometry transformation program and high-fidelity CFD solvers for different sub-disciplines. Hydrodynamics analysis subsystem includes resistance, seakeeping and stability modules. The resistance and seakeeping is analyzed by commercial potential-flow CFD codes, the stability is assessed by in-house code. The geometry variation output can be automatically used by the numerical solvers. By means of the design of experiment (DOE) technique, a neural network metamodel is trained to predict short term motion response of the derived ships efficiently.
The system has been used in a seismic vessel’s hull form optimization to minimize the resistance and maximize the long term seakeeping operability index. Meanwhile, the stability in waves is concerned as a constraint. The hybrid MIGA-NLPQL optimization algorithm is applied for a global-to-local search in resistance optimization. For the synthesis optimization, a Pareto optimal solution set has been obtained and the final solution is achieved by trade-off analysis of the solution set. The entire automatic optimization process can be used for the preliminary design of new high performance vessels.
American Society of Mechanical Engineers
Title: CFD Based Multi-Disciplinary Optimization Design of High-Performance Deep Sea Seismic Vessel
Description:
This paper focuses on the application of a ship hull form multi-disciplinary optimization (MDO) system based on the computational fluid dynamics (CFD).
Using the iSIGHT software, the MDO system integrates an automatic geometry transformation program and high-fidelity CFD solvers for different sub-disciplines.
Hydrodynamics analysis subsystem includes resistance, seakeeping and stability modules.
The resistance and seakeeping is analyzed by commercial potential-flow CFD codes, the stability is assessed by in-house code.
The geometry variation output can be automatically used by the numerical solvers.
By means of the design of experiment (DOE) technique, a neural network metamodel is trained to predict short term motion response of the derived ships efficiently.
The system has been used in a seismic vessel’s hull form optimization to minimize the resistance and maximize the long term seakeeping operability index.
Meanwhile, the stability in waves is concerned as a constraint.
The hybrid MIGA-NLPQL optimization algorithm is applied for a global-to-local search in resistance optimization.
For the synthesis optimization, a Pareto optimal solution set has been obtained and the final solution is achieved by trade-off analysis of the solution set.
The entire automatic optimization process can be used for the preliminary design of new high performance vessels.
Related Results
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Seismic Frequency Enhancement for Mapping and Reservoir Characterization of Arab Formation: Case Study Onshore UAE
Abstract
Mapping and discrimination of Upper Jurassic Arab reservoirs (Arab A/B/C and D) in this 3D seismic onshore field of Abu Dhabi, is very sensitive to the seis...
4D Seismic on Gullfaks
4D Seismic on Gullfaks
SUMMARY
New technologies are rapidly emerging helping to obtain optimal drainage of large reservoirs. 4D seismic is such a reservoir monitoring technique. The phy...
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Abstract
To improve the accuracy of hydrocarbon detection, seismic amplitude variation with offset (AVO), seismic amplitude variation with frequency (AVF), and direc...
Pre-Drilling Pore Pressure Prediction Technique Based on High-Quality OBN Seismic Velocity and its Application in K Oilfield
Pre-Drilling Pore Pressure Prediction Technique Based on High-Quality OBN Seismic Velocity and its Application in K Oilfield
Abstract
Pre-drilling pore pressure prediction based on seismic velocity is a critical step in the oil and gas industry to ensure drilling safety and optimize well c...
General classification of seismic protection systems of buildings and structures
General classification of seismic protection systems of buildings and structures
The issues of ensuring the seismic resistance of buildings and structures hold a leading position despite significant achievements in this area. This is confirmed by the significan...
Debottlenecking of The Machar Slug Catcher
Debottlenecking of The Machar Slug Catcher
Abstract
The BP Machar slug catcher is a combined three phase separator and slug catcher located at the ETAP platform in the British sector of the North Sea. With...
AI/ML Method for Seismic Well Tie Support on the OSDU Platform: Predicting Missing Wireline and Checkshot Data Using Well Borehole, Mudlog, and Seismic Data
AI/ML Method for Seismic Well Tie Support on the OSDU Platform: Predicting Missing Wireline and Checkshot Data Using Well Borehole, Mudlog, and Seismic Data
Abstract
In this study, we introduce an AI/ML method for predicting missing wireline and checkshot data to support seismic well tie workflows. Well tie seismic is a ...

