Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Venus Atmospheric Structure Investigation (VASI) on the DAVINCI Probe

View through CrossRef
The only near-surface temperature/pressure profile of the atmosphere of our twin planet, Venus, was obtained in 1985 by the VEGA-2 lander. The handful of other probe missions have very limited vertical resolution, or sensor failures in the lowest few km.  Unlike altitudes above 40km, which have been relatively well-surveyed by radio occultation profiles from orbiter missions, the fine temperature structure of lowest part of the Venus atmosphere must be interrogated by direct measurement. This structure is important in several respects. First, the structure and composition reflects the interactions between surface and atmosphere of an ‘exoplanet in our back yard’ which may be much more typical than are those of Earth. Secondly, there are indications that particularly interesting phenomena may occur on Venus, not seen in the atmospheres of Earth, Mars or Titan (but analogous to aspects of ocean stratification on Earth): the VEGA-2 profile is impossible to reconcile with a profile that is both convectively stable and compositionally uniform. A favored hypothesis is that the lowest few kilometers are compositionally denser (lower N2). The supercritical thermodynamics of carbon dioxide add to the rich possibilities in this region.The exchange of angular momentum between the retrograde, slowly-rotating Venus and its dense atmosphere is reflected in the wind profile, which can now be interpreted by global circulation models. Again, while cloud-top (60-70km) winds are now well-known from Akatsuki and preceding missions, very little data exist on winds in the hidden lowest 40km.  Doppler tracking, turbulence measurements, and trajectory reconstruction from descent imaging will shed unprecedented light on the lower atmospheric dynamics.DAVINCI was selected for flight in 2021 and is presently under development for launch in 2029. This presentation will review how the VASI’s measurements of pressure, temperature and wind, far superior in resolution and/or quantity to those of previous missions, may improve our understanding of Venus and complement DAVINCI’s composition measurements and imaging.
Copernicus GmbH
Title: Venus Atmospheric Structure Investigation (VASI) on the DAVINCI Probe
Description:
The only near-surface temperature/pressure profile of the atmosphere of our twin planet, Venus, was obtained in 1985 by the VEGA-2 lander.
The handful of other probe missions have very limited vertical resolution, or sensor failures in the lowest few km.
  Unlike altitudes above 40km, which have been relatively well-surveyed by radio occultation profiles from orbiter missions, the fine temperature structure of lowest part of the Venus atmosphere must be interrogated by direct measurement.
This structure is important in several respects.
First, the structure and composition reflects the interactions between surface and atmosphere of an ‘exoplanet in our back yard’ which may be much more typical than are those of Earth.
Secondly, there are indications that particularly interesting phenomena may occur on Venus, not seen in the atmospheres of Earth, Mars or Titan (but analogous to aspects of ocean stratification on Earth): the VEGA-2 profile is impossible to reconcile with a profile that is both convectively stable and compositionally uniform.
A favored hypothesis is that the lowest few kilometers are compositionally denser (lower N2).
The supercritical thermodynamics of carbon dioxide add to the rich possibilities in this region.
The exchange of angular momentum between the retrograde, slowly-rotating Venus and its dense atmosphere is reflected in the wind profile, which can now be interpreted by global circulation models.
Again, while cloud-top (60-70km) winds are now well-known from Akatsuki and preceding missions, very little data exist on winds in the hidden lowest 40km.
  Doppler tracking, turbulence measurements, and trajectory reconstruction from descent imaging will shed unprecedented light on the lower atmospheric dynamics.
DAVINCI was selected for flight in 2021 and is presently under development for launch in 2029.
This presentation will review how the VASI’s measurements of pressure, temperature and wind, far superior in resolution and/or quantity to those of previous missions, may improve our understanding of Venus and complement DAVINCI’s composition measurements and imaging.

Related Results

Venus Atmospheric Dynamics: Akatsuki UVI and TNG HARPS-N observations
Venus Atmospheric Dynamics: Akatsuki UVI and TNG HARPS-N observations
<p>As the closest planet to Earth, it should be expected Venus to be the most Earth-like planet we know. Both Earth and Venus share almost the same radius, mass and d...
Giant Impacts on Venus
Giant Impacts on Venus
Venus is similar to Earth in terms of mass and size and is sometimes also referred to as "Earth's twin". Nevertheless, there are some significant differences between the two planet...
Giant Impacts on Venus 
Giant Impacts on Venus 
Venus is similar to Earth in terms of mass and size and is sometimes also referred to as “Earth’s twin”. Nevertheless, there are some significant diff...
Analysis of lava flow features on Venus for radar sounder simulations
Analysis of lava flow features on Venus for radar sounder simulations
IntroductionPrevious missions to Venus depicted an environment dominated by volcanic landforms and hostile atmospheric conditions. The surface was imaged by the Magellan mission, a...
Exploring the Venusian Clouds: Dayside Atmospheric Gravity Waves with Akatsuki UVI instrument
Exploring the Venusian Clouds: Dayside Atmospheric Gravity Waves with Akatsuki UVI instrument
As our neighbouring world, Venus stands as a pivotal planet in the study of planetary evolution. Its dense atmosphere, mostly composed of carbon dioxide makes it a unique laborator...
The Case for a Mission to Return Cloud Particles from the Lower Atmosphere of Venus
The Case for a Mission to Return Cloud Particles from the Lower Atmosphere of Venus
<p>The possibility of life in the lower Venusian atmosphere has been given serious scientific consideration for many decades (Sagan, 1961; Cockell, 1999; Grinspoon, 1...
Distribution and Variation of the Venusian Cloud-top Sulfur Dioxide Derived from Akatsuki UV Images
Distribution and Variation of the Venusian Cloud-top Sulfur Dioxide Derived from Akatsuki UV Images
IntroductionThe horizontal distribution of sulfuric acid clouds in the Venusian atmosphere is an essential factor that influences the solar energy absorbed by the planet. The cloud...
The Peculiar Case of Extensional Tectonics on Venus: Modes of RIfting and Activity
The Peculiar Case of Extensional Tectonics on Venus: Modes of RIfting and Activity
Venus’ geological history holds critical insights into why Venus and Earth, despite their similarities, have followed such divergent evolutionary paths. Recent discoverie...

Back to Top