Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Fault Tolerant Control Of Spacecraft

View through CrossRef
Autonomous multiple spacecraft formation flying missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory on nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.
Ryerson University Library and Archives
Title: Fault Tolerant Control Of Spacecraft
Description:
Autonomous multiple spacecraft formation flying missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands.
Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully.
Taking inspiration from the existing theory on nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance.
Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis.
The developed algorithms are validated using a hardware-in-the-loop simulation.
A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme.
A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations.
The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration.
We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft.
Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

Related Results

Integration Techniques of Fault Detection and Isolation Using Interval Observers
Integration Techniques of Fault Detection and Isolation Using Interval Observers
An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems. Concerning fault detection, interv...
Fault Tolerant Control Of Spacecraft
Fault Tolerant Control Of Spacecraft
Autonomous multiple spacecraft formation flying missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude an...
Attitude motion of spacecraft during oblique solar panel deployment
Attitude motion of spacecraft during oblique solar panel deployment
PurposeThe purpose of this paper is to establish the dynamics model of spacecraft during deployment of oblique solar panel using Auto Dynamic Analysis of Mechanical System (ADAMS) ...
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Abstract:Little attention had been paid to the intracontinental strike‐slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re‐measured GPS data in 2...
Low-temperature thermochronology of fault zones
Low-temperature thermochronology of fault zones
<p>Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012, 2019).&#1...
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Abstract This study used the growth index, fault activity rate and fault distance burial depth curve methods to analyze the characteristics of fault activity in the central...
Permeability models for carbonate fault cores
Permeability models for carbonate fault cores
<p>The present contribution focuses on carbonates fault cores exposed in central and southern Italy, which crosscut Mesozoic limestones and dolostones, pertain to 10&...
Data-driven Fault Diagnosis for Cyber-Physical Systems
Data-driven Fault Diagnosis for Cyber-Physical Systems
The concept of Industry 4.0 uses cyber-physical systems and the Internet of Things to create "smart factories" that enable automated and connected production. However, the complex ...

Back to Top