Javascript must be enabled to continue!
Water-Ammonia Cycles for the Utilization of Low Temperature Geothermal Resources
View through CrossRef
The research deals with the possibility of effective exploitation of low temperature geothermal energy resources, which are generally much more widespread worldwide compared to conventional high temperature ones, typically available only in limited areas of the Earth. The basic idea is the application of an advanced binary cycle, only thermally coupled to the primary endogen heat source. The selected reference-power cycle is the well-known Kalina, which gives the possibility of optimizing the matching between heat capacities of the geothermal fluid (i.e. typically hot water or saturated steam) and the cycle working fluid, which is a non azeotropic NH3-H2O mixture with variable vaporization temperature at a fixed pressure.
The heat transfer diagrams of the main Kalina heat exchangers, namely the condenser and the evaporator, are analysed with the aim of minimizing the irreversibilities related to the heat transfer. At different fixed NH3-H2O composition and condenser pressures, the evaporator pressure shows an efficiency optimizing value between 40 and 55 bar, generally increasing at higher condenser pressure. At fixed geothermal heat source temperature, condenser/evaporator pressures and working mixture composition, the cycle efficiency increases with increasing evaporator temperature, because of the reduction in the approach temperature difference between the geothermal and the working fluid. Higher efficiencies are found at higher NH3 concentrations.
The proposed Water-Ammonia power cycle is further enhanced introducing a chiller (thus making the power cycle a CCP unit), thanks to the properties of the fluid mixture downstream the absorber, through an intermediate heat exchanger between the condenser and the evaporator.
Mainly due to the better matching of heat capacities between the geothermal and the working fluid, the proposed power cycle offers the possibility of interesting improvements in electrical efficiency compared to traditionally proposed binary cycles using ORCs, at fixed temperature level of the heat source. In the investigated proposal, values of electric efficiency between 15 and 20% are found.
An economic analysis is presented, demonstrating that the CCP system is able to produce electricity at decreased unit cost with respect to the power-only unit.
American Society of Mechanical Engineers
Title: Water-Ammonia Cycles for the Utilization of Low Temperature Geothermal Resources
Description:
The research deals with the possibility of effective exploitation of low temperature geothermal energy resources, which are generally much more widespread worldwide compared to conventional high temperature ones, typically available only in limited areas of the Earth.
The basic idea is the application of an advanced binary cycle, only thermally coupled to the primary endogen heat source.
The selected reference-power cycle is the well-known Kalina, which gives the possibility of optimizing the matching between heat capacities of the geothermal fluid (i.
e.
typically hot water or saturated steam) and the cycle working fluid, which is a non azeotropic NH3-H2O mixture with variable vaporization temperature at a fixed pressure.
The heat transfer diagrams of the main Kalina heat exchangers, namely the condenser and the evaporator, are analysed with the aim of minimizing the irreversibilities related to the heat transfer.
At different fixed NH3-H2O composition and condenser pressures, the evaporator pressure shows an efficiency optimizing value between 40 and 55 bar, generally increasing at higher condenser pressure.
At fixed geothermal heat source temperature, condenser/evaporator pressures and working mixture composition, the cycle efficiency increases with increasing evaporator temperature, because of the reduction in the approach temperature difference between the geothermal and the working fluid.
Higher efficiencies are found at higher NH3 concentrations.
The proposed Water-Ammonia power cycle is further enhanced introducing a chiller (thus making the power cycle a CCP unit), thanks to the properties of the fluid mixture downstream the absorber, through an intermediate heat exchanger between the condenser and the evaporator.
Mainly due to the better matching of heat capacities between the geothermal and the working fluid, the proposed power cycle offers the possibility of interesting improvements in electrical efficiency compared to traditionally proposed binary cycles using ORCs, at fixed temperature level of the heat source.
In the investigated proposal, values of electric efficiency between 15 and 20% are found.
An economic analysis is presented, demonstrating that the CCP system is able to produce electricity at decreased unit cost with respect to the power-only unit.
Related Results
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Abstract
The Wenquan County area in Xinjiang has a large number of hot springs and rich geothermal resources, with high potential for geothermal resource development and ut...
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Geothermal resources are clean energy with a great potential for development and utilization. Gaoyang geothermal field, located in the middle of the raised area in Hebei province, ...
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Abstract
Geothermal energy is a useful source for the generation of electricity, heat, cooling, mineral extraction, oxygen, and hydrogen. For several decades, Venezu...
Introduction to the geothermal play and reservoir geology of the Netherlands
Introduction to the geothermal play and reservoir geology of the Netherlands
Abstract
The Netherlands has ample geothermal resources. During the last decade, development of these resources has picked up fast. In 2007 one geothermal system had been realis...
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
ABSTRACT:
Fushan Sag is in the south of Beibuwan Basin, with rich geothermal resources and large development potential. Based on the regional geological backgroun...
Geothermal Energy in California
Geothermal Energy in California
American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.
This paper was prepared for the 45th Annual California Regional Meeting of the Society of ...
Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China
Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China
AbstractHigh-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan ...
Economic and ecological benefit evaluation of geothermal resource tax policy in China
Economic and ecological benefit evaluation of geothermal resource tax policy in China
Geothermal energy is a renewable energy source, and geothermal heating is a livelihood project, so a resource tax can protect resources and regulate prices. Reasonable geothermal e...

