Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Buckling Analysis of Torpedo’s Cylindrical Shell

View through CrossRef
Abstract Torpedo is a self-propelled weapon. It can be launched above or below the water surface. Torpedo’s different internal parts are housed in cylindrical, conical and spherical shell structures. Underwater applications require the minimization of the structural weight of shell structure for increased buckling strength, speed, and operating distance. To serve this purpose lightweight material such as Al-Cu alloy is preferred for the manufacturing of torpedo’s cylindrical shell. Here in the present investigation, unstiffened cylindrical shell structural member of the torpedo is considered for the evaluation of its linear buckling strength when the torpedo is subjected to hydro-static pressure under the sea water. Linear buckling analysis which is also called Eigen buckling analysis is done on unstiffened cylindrical shell geometry by using ANSYS R14.5 software. The values obtained for linear buckling strength from empirical equations mentioned in British Standards Institution, BS 5500 (now superseded by PD 5500) ‘Unfired Fusion Welded Pressure Vessels’ are validated with those results from ANSYS R14.5 and are observed to be closer to each other. The variation of the failure stress of an unstiffened cylindrical shell due to buckling for the variation of its thickness is also observed using both the empirical and simulation using ANSYS R14.5 approaches and are compared using the corresponding plots. And also, the critical buckling pressures of an unstiffened cylindrical shell with a constant thickness for the formation of different number of lobes for the simply supported boundary conditions are calculated by using empirical relations and this variation is observed using the corresponding plot. For these analyses numerical examples are considered.
Title: Buckling Analysis of Torpedo’s Cylindrical Shell
Description:
Abstract Torpedo is a self-propelled weapon.
It can be launched above or below the water surface.
Torpedo’s different internal parts are housed in cylindrical, conical and spherical shell structures.
Underwater applications require the minimization of the structural weight of shell structure for increased buckling strength, speed, and operating distance.
To serve this purpose lightweight material such as Al-Cu alloy is preferred for the manufacturing of torpedo’s cylindrical shell.
Here in the present investigation, unstiffened cylindrical shell structural member of the torpedo is considered for the evaluation of its linear buckling strength when the torpedo is subjected to hydro-static pressure under the sea water.
Linear buckling analysis which is also called Eigen buckling analysis is done on unstiffened cylindrical shell geometry by using ANSYS R14.
5 software.
The values obtained for linear buckling strength from empirical equations mentioned in British Standards Institution, BS 5500 (now superseded by PD 5500) ‘Unfired Fusion Welded Pressure Vessels’ are validated with those results from ANSYS R14.
5 and are observed to be closer to each other.
The variation of the failure stress of an unstiffened cylindrical shell due to buckling for the variation of its thickness is also observed using both the empirical and simulation using ANSYS R14.
5 approaches and are compared using the corresponding plots.
And also, the critical buckling pressures of an unstiffened cylindrical shell with a constant thickness for the formation of different number of lobes for the simply supported boundary conditions are calculated by using empirical relations and this variation is observed using the corresponding plot.
For these analyses numerical examples are considered.

Related Results

Experimental Study Of Curvature And Frictional Effects On Buckling
Experimental Study Of Curvature And Frictional Effects On Buckling
ABSTRACT Buckling and post-buckling lock-up place a limit on the reach of extended-reach and horizontal wells. Although buckling has received considerable theoret...
Suction Pile Allowable Suction Pressure Envelopes Based on Soil Failure and Structural Buckling
Suction Pile Allowable Suction Pressure Envelopes Based on Soil Failure and Structural Buckling
Abstract This study develops the allowable suction pressure envelopes using applicable industrial codes for different suction pile sizes at various penetration depth...
The Buckling of Fuel Rods Under Inertia Loading
The Buckling of Fuel Rods Under Inertia Loading
The buckling analysis of fuel rods during an end drop impact of a spent fuel transportation cask has traditionally been performed to demonstrate the structural integrity of the fue...
Buckling of Concentric String Pipe-in-Pipe
Buckling of Concentric String Pipe-in-Pipe
Abstract During the design stage of concentric tubular strings, the outer string is always considered to be rigid. However, in reality, the outer string can become d...
A metamaterial cylindrical shell with multiple graded resonators for broadband longitudinal wave attenuation
A metamaterial cylindrical shell with multiple graded resonators for broadband longitudinal wave attenuation
This paper investigates a metamaterial cylindrical shell with local resonators for broadband longitudinal wave attenuation. A three-component phononic crystal metamaterial cylindri...
Static stability of sandwich panels with honeycomb cores made by additive technologies
Static stability of sandwich panels with honeycomb cores made by additive technologies
This paper presents approaches to and the results of finite-element analysis of static buckling in cylindrical sandwich panels. The core layer of the panels is a polylactide honeyc...
Callista chione – geochemical archive of δ18O and δ13C data
Callista chione – geochemical archive of δ18O and δ13C data
<p>The Smooth clam <em>Callista chione</em> is a commercially important venerid bivalve. It is widely distributed in the eastern Atlantic ...
Eccentricity variations trigger “subduction” in Europa’s ice shell
Eccentricity variations trigger “subduction” in Europa’s ice shell
IntroductionIcy moon Europa possesses one of the youngest surfaces in the Solar System. Overall smooth, yet rich in unique tectonic features, it records mostly extensional processe...

Back to Top