Javascript must be enabled to continue!
Geothermal Pre-Drilling Decision Optimization: Methodologies and Case Histories
View through CrossRef
Abstract
Geothermal formations are hot, often hard, highly fractured and under-pressured. They often contain corrosive fluids and some formation fluids that have very high solids content. These harsh environments mean that drilling is usually difficult. Challenges include degradation of drilling fluids with associated variances in fluids properties, difficulty in managing mud systems, slow rate of penetration, short bit life and lost circulation. The potential for fines migration and induced formation damage in geothermal wells is significantly high due to weakening of attaching electrostatic forces under high temperatures and as a result of thermal contraction. Through case histories, this paper presents drilling challenges and the mechanisms of reservoir damages. The paper will also show the workflow and methodology of using the integrated geosciences analysis in pre-planning to mitigate the challenges related to geothermal activities.
Understanding geothermal reservoirs challenges requires a systematic workflow including but not limited to the following: structural geology, mineralogy, geochemistry, drilling fluid chemistry, high-temperature rock-water-fluids interactions, drill bit selection, and geomechanics modeling. ThermoChemo-Poroelasticity stability analysis is also an important consideration. Lab work to properly select the drilling fluids chemicals is required to optimize the drilling fluids parameters and simulating bottom hole temperature.
The outcomes from geology, mineralogy, geochemistry and geomechanics will be considered for optimum drilling fluids selection and fluids formulation optimization. The ultimate outcomes include but are not limited to MWT limits (Window), Breakout width, Pmud to trigger slip, drilling fluids formulation effects, drilling bits selection and surface parameters optimization.
For reliable performance in high-temperature environments, we need to consider the following: Know your geothermal reservoir; rock type, mineralogy, geochemistry, structural controls, geomechanics and Thermo/Chemo-Poro-elasticity conditions.Matching your injected water chemistry to formation water chemistry is very important, especially in high TDS geothermal brines. Incompatible total dissolved solids (TDS) concentrations will alter the ion carrying capacity, disturb the natural reservoir equilibrium and can lead to formation damage.Optimizing drilling fluid selection.Hydraulics, gel breaking, swab and surge including thermal effects.High-performance drill bits to keep you in the hole longer, reducing trips and saving you moneyAdvanced drilling technologies to deliver fast, efficient wellbore construction, including specially engineered motors for extreme operating environments, automated drilling systems, and high-temperature MWD technologies.
Title: Geothermal Pre-Drilling Decision Optimization: Methodologies and Case Histories
Description:
Abstract
Geothermal formations are hot, often hard, highly fractured and under-pressured.
They often contain corrosive fluids and some formation fluids that have very high solids content.
These harsh environments mean that drilling is usually difficult.
Challenges include degradation of drilling fluids with associated variances in fluids properties, difficulty in managing mud systems, slow rate of penetration, short bit life and lost circulation.
The potential for fines migration and induced formation damage in geothermal wells is significantly high due to weakening of attaching electrostatic forces under high temperatures and as a result of thermal contraction.
Through case histories, this paper presents drilling challenges and the mechanisms of reservoir damages.
The paper will also show the workflow and methodology of using the integrated geosciences analysis in pre-planning to mitigate the challenges related to geothermal activities.
Understanding geothermal reservoirs challenges requires a systematic workflow including but not limited to the following: structural geology, mineralogy, geochemistry, drilling fluid chemistry, high-temperature rock-water-fluids interactions, drill bit selection, and geomechanics modeling.
ThermoChemo-Poroelasticity stability analysis is also an important consideration.
Lab work to properly select the drilling fluids chemicals is required to optimize the drilling fluids parameters and simulating bottom hole temperature.
The outcomes from geology, mineralogy, geochemistry and geomechanics will be considered for optimum drilling fluids selection and fluids formulation optimization.
The ultimate outcomes include but are not limited to MWT limits (Window), Breakout width, Pmud to trigger slip, drilling fluids formulation effects, drilling bits selection and surface parameters optimization.
For reliable performance in high-temperature environments, we need to consider the following: Know your geothermal reservoir; rock type, mineralogy, geochemistry, structural controls, geomechanics and Thermo/Chemo-Poro-elasticity conditions.
Matching your injected water chemistry to formation water chemistry is very important, especially in high TDS geothermal brines.
Incompatible total dissolved solids (TDS) concentrations will alter the ion carrying capacity, disturb the natural reservoir equilibrium and can lead to formation damage.
Optimizing drilling fluid selection.
Hydraulics, gel breaking, swab and surge including thermal effects.
High-performance drill bits to keep you in the hole longer, reducing trips and saving you moneyAdvanced drilling technologies to deliver fast, efficient wellbore construction, including specially engineered motors for extreme operating environments, automated drilling systems, and high-temperature MWD technologies.
Related Results
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Geothermal resources are clean energy with a great potential for development and utilization. Gaoyang geothermal field, located in the middle of the raised area in Hebei province, ...
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Abstract
The Wenquan County area in Xinjiang has a large number of hot springs and rich geothermal resources, with high potential for geothermal resource development and ut...
Introduction to the geothermal play and reservoir geology of the Netherlands
Introduction to the geothermal play and reservoir geology of the Netherlands
Abstract
The Netherlands has ample geothermal resources. During the last decade, development of these resources has picked up fast. In 2007 one geothermal system had been realis...
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Abstract
Geothermal energy is a useful source for the generation of electricity, heat, cooling, mineral extraction, oxygen, and hydrogen. For several decades, Venezu...
Pit Less Drilling Significantly Reduces Wells Environmental Footprint
Pit Less Drilling Significantly Reduces Wells Environmental Footprint
Abstract
Pit less Drilling technology is a technology that eliminates the requirement for earthen pits or sumps to capture waste fluid. In this paper we will examine...
Geothermal Power Generation
Geothermal Power Generation
AbstractGeothermal energy is the heat energy generated from radioactive decay of minerals and stored in the Earth. Theoretically, total geothermal resources are more than adequate ...
Subsurface Located Geothermal Well – Case Study
Subsurface Located Geothermal Well – Case Study
Abstract
The recovery of geothermal energy has become very attractive in the last decades. Advantages like the small footprint, the waste-free and CO2 neutral energy produc...


