Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Baicalein Attenuates Lung Injury Induced by Myocardial Ischemia and Reperfusion

View through CrossRef
Baicalein is an active component of Scutellaria baicalensis Georgi, which has traditionally been used to treat cardiovascular diseases in China. In this study, we investigated if treatment with baicalein can attenuate the lung injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R, induced by a 40-min occlusion of the left anterior descending coronary artery and a 3-h reperfusion, significantly increased histological damage and the wet-to-dry weight ratio of lungs in rats. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei and caspase-3 activation was significantly increased in the lungs. Serum and bronchoalveolar lavage fluid levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as were TNF-[Formula: see text] levels in the lung. Intravenous administration with baicalein at doses of 3, 10, and 30[Formula: see text]mg/kg for ten minutes before myocardial I/R significantly reduced histological damage, the wet-to-dry weight ratio, and apoptosis in the lung. Baicalein also significantly inhibited the increase in levels of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6. Moreover, baicalein increased Bcl-2 and decreased p53, Bax, and cytochrome [Formula: see text] in lungs. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was increased, while the phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was decreased. In conclusion, treatment with baicalein attenuates the lung injury induced by myocardial I/R. The mechanisms might be related to the limiting of apoptosis, possibly via the inhibition of both the extrinsic and intrinsic pathways of apoptosis, including the inhibition of TNF-[Formula: see text] production and modulation of pro- and anti-apoptotic signaling elements.
Title: Baicalein Attenuates Lung Injury Induced by Myocardial Ischemia and Reperfusion
Description:
Baicalein is an active component of Scutellaria baicalensis Georgi, which has traditionally been used to treat cardiovascular diseases in China.
In this study, we investigated if treatment with baicalein can attenuate the lung injury induced by myocardial ischemia and reperfusion (I/R).
Myocardial I/R, induced by a 40-min occlusion of the left anterior descending coronary artery and a 3-h reperfusion, significantly increased histological damage and the wet-to-dry weight ratio of lungs in rats.
The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei and caspase-3 activation was significantly increased in the lungs.
Serum and bronchoalveolar lavage fluid levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as were TNF-[Formula: see text] levels in the lung.
Intravenous administration with baicalein at doses of 3, 10, and 30[Formula: see text]mg/kg for ten minutes before myocardial I/R significantly reduced histological damage, the wet-to-dry weight ratio, and apoptosis in the lung.
Baicalein also significantly inhibited the increase in levels of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6.
Moreover, baicalein increased Bcl-2 and decreased p53, Bax, and cytochrome [Formula: see text] in lungs.
Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was increased, while the phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was decreased.
In conclusion, treatment with baicalein attenuates the lung injury induced by myocardial I/R.
The mechanisms might be related to the limiting of apoptosis, possibly via the inhibition of both the extrinsic and intrinsic pathways of apoptosis, including the inhibition of TNF-[Formula: see text] production and modulation of pro- and anti-apoptotic signaling elements.

Related Results

Salvia miltiorrhiza injection ameliorates myocardial ischemia-reperfusion injury via downregulation of PECAM-1
Salvia miltiorrhiza injection ameliorates myocardial ischemia-reperfusion injury via downregulation of PECAM-1
Purpose: To investigate the effect of Salvia miltiorrhiza injection on myocardial ischemia-reperfusion injury and PECAM-1 related pathways. Method: Male Wistar rats were used...
Abstract 10832: Transient Receptor Potential Melastatin 7 (TRPM7) Contributes to Myocardial Ischemic Injury
Abstract 10832: Transient Receptor Potential Melastatin 7 (TRPM7) Contributes to Myocardial Ischemic Injury
Introduction: Ischemic heart disease is the leading cause of death in the USA. Despite the progress of interventional coronary reperfusion strategies, myocardial ischem...
Oxygen‐derived free radicals and postischemic myocardial reperfusion: therapeutic implications
Oxygen‐derived free radicals and postischemic myocardial reperfusion: therapeutic implications
Summary—Oxygen‐derived free radicals have been implicated in the pathogenesis of various disease states, including myocardial ischemia and reperfusion. In this article, we review 1...

Back to Top