Javascript must be enabled to continue!
Symplectic Effective Order Numerical Methods for Separable Hamiltonian Systems
View through CrossRef
A family of explicit symplectic partitioned Runge-Kutta methods are derived with effective order 3 for the numerical integration of separable Hamiltonian systems. The proposed explicit methods are more efficient than existing symplectic implicit Runge-Kutta methods. A selection of numerical experiments on separable Hamiltonian system confirming the efficiency of the approach is also provided with good energy conservation.
Title: Symplectic Effective Order Numerical Methods for Separable Hamiltonian Systems
Description:
A family of explicit symplectic partitioned Runge-Kutta methods are derived with effective order 3 for the numerical integration of separable Hamiltonian systems.
The proposed explicit methods are more efficient than existing symplectic implicit Runge-Kutta methods.
A selection of numerical experiments on separable Hamiltonian system confirming the efficiency of the approach is also provided with good energy conservation.
Related Results
Symplectic Bregman Divergences
Symplectic Bregman Divergences
We present a generalization of Bregman divergences in finite-dimensional symplectic vector spaces that we term symplectic Bregman divergences. Symplectic Bregman divergences are de...
Determination of Pressure-Temperature Conditions of Retrograde Symplectic Assemblages in Granulites and Amphibolites
Determination of Pressure-Temperature Conditions of Retrograde Symplectic Assemblages in Granulites and Amphibolites
Symplectites form during post-orogenic fast uplift processes in orogenic belts, and retrograde Symplectic assemblages mainly consist of plagioclase + quartz ± orthopyroxene ± clino...
Symplectic Partitioned Runge-Kutta and Symplectic Runge-Kutta Methods Generated by 2-Stage RadauIA Method
Symplectic Partitioned Runge-Kutta and Symplectic Runge-Kutta Methods Generated by 2-Stage RadauIA Method
To preserve the symplecticity property, it is natural to require numerical integration of Hamiltonian systems to be symplectic. As a famous numerical integration, it is known that ...
On Kostant-Kirillov Symplectic Structure and Quasi-Poisson Structures of the Euler-Arnold Systems
On Kostant-Kirillov Symplectic Structure and Quasi-Poisson Structures of the Euler-Arnold Systems
The concept of symplectic structure emerged between 1808 to 1810 through the works of Lagrange and Poisson on the trajectory of the planets of the solar system. In order to explain...
Maximal symplectic torus actions
Maximal symplectic torus actions
AbstractThere are several different notions of maximal torus actions on smooth manifolds, in various contexts: symplectic, Riemannian, complex. In the symplectic context, for the s...
Geometric numerical methods
Geometric numerical methods
Neglecting collisions and other dissipative effects, many models of plasma physics including kinetic, fluid, MHD and hybrid models have been shown to possess a noncanonical hamilto...
Fidelity of quantum blobs
Fidelity of quantum blobs
Quantum blobs are the smallest units of phase space that are compatible with the Robertson-Schrödinger indeterminacy relation and invariant under general symplectic transformations...
Quantum distinguishability and symplectic topology
Quantum distinguishability and symplectic topology
The distinguishability between pairs of quantum blobs, as measured by quantum fidelity, is defined on complex phase space. Fidelity is physically interpreted as the probability tha...

