Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

On Exponential Convergence Conditions of an Extended Projection Neural Network

View through CrossRef
Recently the extended projection neural network was proposed to solve constrained monotone variational inequality problems and a class of constrained nonmonotontic variational inequality problems. Its exponential convergence was developed under the positive definiteness condition of the Jacobian matrix of the nonlinear mapping. This note proposes new results on the exponential convergence of the output trajectory of the extended projection neural network under the weak conditions that the Jacobian matrix of the nonlinear mapping may be positive semidefinite or not. Therefore, new results further demonstrate that the extended projection neural network has a fast convergence rate when solving a class of constrained monotone variational inequality problems and nonmonotonic variational inequality problems. Illustrative examples show the significance of the obtained results.
Title: On Exponential Convergence Conditions of an Extended Projection Neural Network
Description:
Recently the extended projection neural network was proposed to solve constrained monotone variational inequality problems and a class of constrained nonmonotontic variational inequality problems.
Its exponential convergence was developed under the positive definiteness condition of the Jacobian matrix of the nonlinear mapping.
This note proposes new results on the exponential convergence of the output trajectory of the extended projection neural network under the weak conditions that the Jacobian matrix of the nonlinear mapping may be positive semidefinite or not.
Therefore, new results further demonstrate that the extended projection neural network has a fast convergence rate when solving a class of constrained monotone variational inequality problems and nonmonotonic variational inequality problems.
Illustrative examples show the significance of the obtained results.

Related Results

On Convergence Conditions of an Extended Projection Neural Network
On Convergence Conditions of an Extended Projection Neural Network
The output trajectory convergence of an extended projection neural network was developed under the positive definiteness condition of the Jacobian matrix of nonlinear mapping. This...
Bicomplex Projection Rule for Complex-Valued Hopfield Neural Networks
Bicomplex Projection Rule for Complex-Valued Hopfield Neural Networks
A complex-valued Hopfield neural network (CHNN) with a multistate activation function is a multistate model of neural associative memory. The weight parameters need a lot of memory...
Noise Robust Projection Rule for Klein Hopfield Neural Networks
Noise Robust Projection Rule for Klein Hopfield Neural Networks
Multistate Hopfield models, such as complex-valued Hopfield neural networks (CHNNs), have been used as multistate neural associative memories. Quaternion-valued Hopfield neural net...
Detection of whale calls in noise: Performance comparison between a beluga whale, human listeners, and a neural network
Detection of whale calls in noise: Performance comparison between a beluga whale, human listeners, and a neural network
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to...
Like Me or Like Us
Like Me or Like Us
Research has shown abundant evidence for social projection, that is, the tendency to expect similarity between oneself and others ( Krueger, 1998a , 1998b ). This effect is stronge...
Training Pi-Sigma Network by Online Gradient Algorithm with Penalty for Small Weight Update
Training Pi-Sigma Network by Online Gradient Algorithm with Penalty for Small Weight Update
A pi-sigma network is a class of feedforward neural networks with product units in the output layer. An online gradient algorithm is the simplest and most often used training metho...

Back to Top