Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

GNSS Storm Nowcasting Demonstrator for Bulgaria

View through CrossRef
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational Numerical Weather Prediction in Europe within the GNSS water vapour service (E-GVAP). The advancement of GNSS processing made the quality of real-time GNSS tropospheric products comparable to near-real-time solutions. In addition, they can be provided with a temporal resolution of 5 min and latency of 10 min, suitable for severe weather nowcasting. This paper exploits the added value of sub-hourly real-time GNSS tropospheric products for the nowcasting of convective storms in Bulgaria. A convective Storm Demonstrator (Storm Demo) is build using real-time GNSS tropospheric products and Instability Indices to derive site-specific threshold values in support of public weather and hail suppression services. The Storm Demo targets the development of service featuring GNSS products for two regions with hail suppression operations in Bulgaria, where thunderstorms and hail events occur between May and September, with a peak in July. The Storm Demo real-time Precise Point Positioning processing is conducted with the G-Nut software with a temporal resolution of 15 min for 12 ground-based GNSS stations in Bulgaria. Real-time data evaluation is done using reprocessed products and the achieved precision is below 9 mm, which is within the nowcasting requirements of the World Meteorologic Organisation. For the period May–September 2021, the seasonal classification function for thunderstorm nowcasting is computed and evaluated. The probability of thunderstorm detection is 83%, with a false alarm ration of 38%. The added value of the high temporal resolution of the GNSS tropospheric gradients is investigated for a storm case on 24–30 August 2021. Real-time tropospheric products and classification functions are integrated and updated in real-time on a publicly accessible geoportal. 
Title: GNSS Storm Nowcasting Demonstrator for Bulgaria
Description:
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational Numerical Weather Prediction in Europe within the GNSS water vapour service (E-GVAP).
The advancement of GNSS processing made the quality of real-time GNSS tropospheric products comparable to near-real-time solutions.
In addition, they can be provided with a temporal resolution of 5 min and latency of 10 min, suitable for severe weather nowcasting.
This paper exploits the added value of sub-hourly real-time GNSS tropospheric products for the nowcasting of convective storms in Bulgaria.
A convective Storm Demonstrator (Storm Demo) is build using real-time GNSS tropospheric products and Instability Indices to derive site-specific threshold values in support of public weather and hail suppression services.
The Storm Demo targets the development of service featuring GNSS products for two regions with hail suppression operations in Bulgaria, where thunderstorms and hail events occur between May and September, with a peak in July.
The Storm Demo real-time Precise Point Positioning processing is conducted with the G-Nut software with a temporal resolution of 15 min for 12 ground-based GNSS stations in Bulgaria.
Real-time data evaluation is done using reprocessed products and the achieved precision is below 9 mm, which is within the nowcasting requirements of the World Meteorologic Organisation.
For the period May–September 2021, the seasonal classification function for thunderstorm nowcasting is computed and evaluated.
The probability of thunderstorm detection is 83%, with a false alarm ration of 38%.
The added value of the high temporal resolution of the GNSS tropospheric gradients is investigated for a storm case on 24–30 August 2021.
Real-time tropospheric products and classification functions are integrated and updated in real-time on a publicly accessible geoportal.
 .

Related Results

GNSS Storm Nowcasting Demonstrator for Bulgaria
GNSS Storm Nowcasting Demonstrator for Bulgaria
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational...
GNSS reflectometry for land remote sensing applications
GNSS reflectometry for land remote sensing applications
Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological...
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
The ESA GENESIS mission, which obtained green light at ESA's Council Meeting at Ministerial Level in November 2022 and which is expected to be launched in 2027, aims to significant...
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Abstract Geocenter motion in GNSS solutions is ill-defined because of the GNSS orbit modeling errors. Especially, the Z geocenter component derived from GNSS data is most...
On the Impact of GNSS Multipath Correction Maps on Slant Wet Delays for Tracking Severe Weather Events
On the Impact of GNSS Multipath Correction Maps on Slant Wet Delays for Tracking Severe Weather Events
<p>Climate change has led to an increase in the frequency and severity of weather events with intense precipitation and subsequently a greater susceptibility to flash...
Skillful deep learning-based precipitation nowcasting based on new AI-synthetic radar data
Skillful deep learning-based precipitation nowcasting based on new AI-synthetic radar data
Accurate and timely rainfall nowcasting is important for protecting the public from heavy rainfall-induced disasters. In recent years, deep-learning models have been demonstrated t...
Evaluation of the Repeatability and Accuracy of RTK GNSS under Tree Canopy
Evaluation of the Repeatability and Accuracy of RTK GNSS under Tree Canopy
Using the Real Time Kinematic (RTK) GNSS (Global Navigation Satellite Systems) Method, one may precisely estimate a location on Earth in “real-time” to within a few centimeters. Ho...
A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation
A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation
Abstract Intelligent transportation system is increasing the importance of real-time acquisition of positioning, navigation, and timing information from high-accurac...

Back to Top