Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Multimodal Imaging Brain Connectivity Analysis toolbox (MIBCA)

View through CrossRef
Aim: In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods: The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19-73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results: It was observed both a high inter-hemispheric symmetry and an intra-hemispheric modularity associated with structural data, whilst functional data presented lower inter-hemispheric symmetry and a high inter-hemispheric modularity. Furthermore, when testing for differences between two subgroups (<40 and >40 years old adults) we observed a significant reduction in the volume and thickness, and an increase in the mean diffusivity of most of the subcortical/cortical regions. Conclusion: While bridging the gap between the high numbers of packages and tools widely available for the neuroimaging community in one toolbox, MIBCA also offers different possibilities for combining, analysing and visualising data in novel ways, enabling a better understanding of the human brain.
Title: Multimodal Imaging Brain Connectivity Analysis toolbox (MIBCA)
Description:
Aim: In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks.
However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures.
Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses.
Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity.
Materials and Methods: The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET).
It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit.
It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the the Brain Connectivity Toolbox.
Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms.
In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19-73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also.
Results: It was observed both a high inter-hemispheric symmetry and an intra-hemispheric modularity associated with structural data, whilst functional data presented lower inter-hemispheric symmetry and a high inter-hemispheric modularity.
Furthermore, when testing for differences between two subgroups (<40 and >40 years old adults) we observed a significant reduction in the volume and thickness, and an increase in the mean diffusivity of most of the subcortical/cortical regions.
Conclusion: While bridging the gap between the high numbers of packages and tools widely available for the neuroimaging community in one toolbox, MIBCA also offers different possibilities for combining, analysing and visualising data in novel ways, enabling a better understanding of the human brain.

Related Results

[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED]➢Item Name - Gro-X Brain➢ Creation - Natural Organic Compound➢ Incidental Effects - NA➢ Accessibility - Online➢ Rating - ⭐⭐⭐⭐⭐➢ Click Here To Visit - Official Website - ...
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct Introduction Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Convolutional Sparse Coded Dynamic Brain Functional Connectivity
Convolutional Sparse Coded Dynamic Brain Functional Connectivity
AbstractFunctional brain network has been widely studied in many previous work for brain disorder diagnosis and brain network analysis. However, most previous work focus on static ...
Corticocortical and Corticomuscular Connectivity Dynamics in Standing Posture: Electroencephalography Study
Corticocortical and Corticomuscular Connectivity Dynamics in Standing Posture: Electroencephalography Study
AbstractCortical involvements, including those in the sensorimotor, frontal, and occipitoparietal regions, are important mechanisms of neural control in human standing. Previous re...
AFR-BERT: Attention-based mechanism feature relevance fusion multimodal sentiment analysis model
AFR-BERT: Attention-based mechanism feature relevance fusion multimodal sentiment analysis model
Multimodal sentiment analysis is an essential task in natural language processing which refers to the fact that machines can analyze and recognize emotions through logical reasonin...
A Data Structure for real-time Aggregation Queries of Big Brain Networks
A Data Structure for real-time Aggregation Queries of Big Brain Networks
AbstractRecent advances in neuro-imaging allowed big brain-initiatives and consortia to create vast resources of brain data that can be mined by researchers for their individual pr...
Refining intra-patch connectivity measures in landscape fragmentation and connectivity indices
Refining intra-patch connectivity measures in landscape fragmentation and connectivity indices
Abstract Context. Measuring intra-patch connectivity, i.e. the connectivity within a habitat patch, is important to evaluate landscape fragmentation and connectivity. Howev...

Back to Top