Javascript must be enabled to continue!
On Matrices with Bidimensional Fibonacci Numbers
View through CrossRef
Abstract
In this paper, the bidimensional extensions of the Fibonacci numbers are explored, along with a detailed examination of their properties, characteristics, and some identities. We introduce and study the matrices with bidimensional Fibonacci numbers, focusing in particular on their recurrence relation, key properties, determinant, and various other identities. It is our purpose to study the matrix version of bidimensional Fibonacci numbers and provide new results and sometimes extensions of some results existing in the literature. We aim to introduce these matrices using the bidimensional Fibonacci numbers and to give the determinant of these matrices.
Walter de Gruyter GmbH
Title: On Matrices with Bidimensional Fibonacci Numbers
Description:
Abstract
In this paper, the bidimensional extensions of the Fibonacci numbers are explored, along with a detailed examination of their properties, characteristics, and some identities.
We introduce and study the matrices with bidimensional Fibonacci numbers, focusing in particular on their recurrence relation, key properties, determinant, and various other identities.
It is our purpose to study the matrix version of bidimensional Fibonacci numbers and provide new results and sometimes extensions of some results existing in the literature.
We aim to introduce these matrices using the bidimensional Fibonacci numbers and to give the determinant of these matrices.
Related Results
Some Properties of the Fibonacci Sequence
Some Properties of the Fibonacci Sequence
The purposes of this paper are; (a) to develop a relationship between subscripts of the symbols of Fibonacci and Lucas numbers and the numbers themselves; (b) to develop relationsh...
Subespacios hiperinvariantes y característicos : una aproximación geométrica
Subespacios hiperinvariantes y característicos : una aproximación geométrica
The aim of this thesis is to study the hyperinvariant and characteristic subspaces of a matrix, or equivalently, of an endomorphism of a finite dimensional vector space. We restric...
Mòduls locals de sistemes dinàmics lineals amb coeficients constants
Mòduls locals de sistemes dinàmics lineals amb coeficients constants
La present memòria estudia l'estabilitat estructural de ternes de matrius. Es ben conegut que els sistemes dinàmic lineals amb coeficients constants poden venir definits per ternes...
Beauty of Plants and Flowers Obeys Fibonacci Sequences
Beauty of Plants and Flowers Obeys Fibonacci Sequences
The aim of the study is to test the hypothesis that plants or flowers exhibiting Fibonacci sequences with larger numbers possess greater aesthetic beauty. As the number of Fibonacc...
Determinants and inverses of circulant matrices with complex Fibonacci numbers
Determinants and inverses of circulant matrices with complex Fibonacci numbers
Abstract
Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers
F*1, F*2, . . . , F*n. In the present paper we...
Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions
Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions
We have investigated new Pauli Fibonacci and Pauli Lucas quaternions by taking the components of these quaternions as Gaussian Fibonacci and Gaussian Lucas numbers, respectively. W...
Representation of Integers as Sums of Fibonacci and Lucas Numbers
Representation of Integers as Sums of Fibonacci and Lucas Numbers
Motivated by the Elementary Problem B-416 in the Fibonacci Quarterly, we show that, given any integers n and r with n≥2, every positive integer can be expressed as a sum of Fibonac...
Fibonacci Type Semigroups
Fibonacci Type Semigroups
We study “Fibonacci type” groups and semigroups. By establishing asphericity of their presentations we show that many of the groups are infinite. We combine this with Adjan graph t...

