Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A Systematic Literature Review on Outlier Detection in Wireless Sensor Networks

View through CrossRef
A wireless sensor network (WSN) is defined as a set of spatially distributed and interconnected sensor nodes. WSNs allow one to monitor and recognize environmental phenomena such as soil moisture, air pollution, and health data. Because of the very limited resources available in sensors, the collected data from WSNs are often characterized as unreliable or uncertain. However, applications using WSNs demand precise readings, and uncertainty in data reading can cause serious damage (e.g., health monitoring data). Therefore, an efficient local/distributed data processing algorithm is needed to ensure: (1) the extraction of precise and reliable values from noisy readings; (2) the detection of anomalies from data reported by sensors; and (3) the identification of outlier sensors in a WSN. Several works have been conducted to achieve these objectives using several techniques such as machine learning algorithms, mathematical modeling, and clustering. The purpose of this paper is to conduct a systematic literature review to report the available works on outlier and anomaly detection in WSNs. The paper highlights works conducted from January 2004 to October 2018. A total of 3520 papers are reviewed in the initial search process. Later, these papers are filtered by title, abstract, and contents, and a total of 117 papers are selected. These papers are examined to answer the defined research questions. The current paper presents an improved taxonomy of outlier detection techniques. This will help researchers and practitioners to find the most relevant and recent studies related to outlier detection in WSNs. Finally, the paper identifies existing gaps that future studies can fill.
Title: A Systematic Literature Review on Outlier Detection in Wireless Sensor Networks
Description:
A wireless sensor network (WSN) is defined as a set of spatially distributed and interconnected sensor nodes.
WSNs allow one to monitor and recognize environmental phenomena such as soil moisture, air pollution, and health data.
Because of the very limited resources available in sensors, the collected data from WSNs are often characterized as unreliable or uncertain.
However, applications using WSNs demand precise readings, and uncertainty in data reading can cause serious damage (e.
g.
, health monitoring data).
Therefore, an efficient local/distributed data processing algorithm is needed to ensure: (1) the extraction of precise and reliable values from noisy readings; (2) the detection of anomalies from data reported by sensors; and (3) the identification of outlier sensors in a WSN.
Several works have been conducted to achieve these objectives using several techniques such as machine learning algorithms, mathematical modeling, and clustering.
The purpose of this paper is to conduct a systematic literature review to report the available works on outlier and anomaly detection in WSNs.
The paper highlights works conducted from January 2004 to October 2018.
A total of 3520 papers are reviewed in the initial search process.
Later, these papers are filtered by title, abstract, and contents, and a total of 117 papers are selected.
These papers are examined to answer the defined research questions.
The current paper presents an improved taxonomy of outlier detection techniques.
This will help researchers and practitioners to find the most relevant and recent studies related to outlier detection in WSNs.
Finally, the paper identifies existing gaps that future studies can fill.

Related Results

Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks
Design of multi-energy-space-based energy-efficient algorithm in novel software-defined wireless sensor networks
Energy efficiency has always been a hot issue in wireless sensor networks. A lot of energy-efficient algorithms have been proposed to reduce energy consumption in traditional wirel...
Routing Security in Wireless Sensor Networks
Routing Security in Wireless Sensor Networks
Since routing is a fundamental operation in all types of networks, ensuring routing security is a necessary requirement to guarantee the success of routing operation. Securing rout...
Do evidence summaries increase health policy‐makers' use of evidence from systematic reviews? A systematic review
Do evidence summaries increase health policy‐makers' use of evidence from systematic reviews? A systematic review
This review summarizes the evidence from six randomized controlled trials that judged the effectiveness of systematic review summaries on policymakers' decision making, or the most...
Investigating Outlier Detection Techniques Based on Kernel Rough Clustering
Investigating Outlier Detection Techniques Based on Kernel Rough Clustering
Background: Data quality is crucial to the success of big data analytics. However, the presence of outliers affects data quality and data analysis. Employing effective outlier dete...
Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
An iterative outlier elimination procedure based on hypothesis testing, commonly known as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of t...

Back to Top