Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Even Star Decomposition of Complete Bipartite Graphs

View through CrossRef
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">1</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">3</span></sub><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">n</span></sub><span style="font-family: 宋体; font-size: medium;">) of a graph G is an Arithmetic Decomposition(AD) if |</span><span><span style="font-family: 宋体; font-size: medium;">E</span></span><span style="font-family: 宋体; font-size: medium;">(</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">i</span></sub><span style="font-family: 宋体; font-size: medium;">)| = a + (i – 1)d for all i = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">1, 2,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, n and a, d</span></span><span><span style="font-size: medium;">∈</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">Z</span><sup><span style="font-family: 宋体; font-size: small;">+</span></sup><span style="font-family: 宋体; font-size: medium;">. Clearly q = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">n/2</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> [2a + (n – 1)d]. The AD is a CMD if a = 1 and d = 1. In this paper we introduced the new concept Even Decomposition of graphs. If a = 2 and d = 2 in AD, then q = n(n + 1). That is, the number of edges of G </span><span><span style="font-family: 宋体; font-size: medium;">is the sum of first n even numbers 2, 4, 6,</span></span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, 2n. Thus we call the AD with a =</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> 2 and</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> d = 2 as Even Decomposition. Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as (</span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub></span><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">4</span></sub></span><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2n</span></sub><span style="font-family: 宋体; font-size: medium;">). </span></span></p><p><span lang="EN-US"><span style="font-family: Calibri; font-size: medium;"> </span></span></p>
Title: Even Star Decomposition of Complete Bipartite Graphs
Description:
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">1</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">3</span></sub><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">n</span></sub><span style="font-family: 宋体; font-size: medium;">) of a graph G is an Arithmetic Decomposition(AD) if |</span><span><span style="font-family: 宋体; font-size: medium;">E</span></span><span style="font-family: 宋体; font-size: medium;">(</span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">i</span></sub><span style="font-family: 宋体; font-size: medium;">)| = a + (i – 1)d for all i = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">1, 2,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, n and a, d</span></span><span><span style="font-size: medium;">∈</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">Z</span><sup><span style="font-family: 宋体; font-size: small;">+</span></sup><span style="font-family: 宋体; font-size: medium;">.
Clearly q = </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">n/2</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> [2a + (n – 1)d].
The AD is a CMD if a = 1 and d = 1.
In this paper we introduced the new concept Even Decomposition of graphs.
If a = 2 and d = 2 in AD, then q = n(n + 1).
That is, the number of edges of G </span><span><span style="font-family: 宋体; font-size: medium;">is the sum of first n even numbers 2, 4, 6,</span></span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, 2n.
Thus we call the AD with a =</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> 2 and</span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;"> d = 2 as Even Decomposition.
Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as (</span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">2</span></sub></span><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span><sub><span style="font-family: 宋体; font-size: small;">4</span></sub></span><span style="font-family: 宋体; font-size: medium;">,</span></span><span><span style="font-size: medium;">… </span></span><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">, </span><span><span style="font-family: 宋体; font-size: medium;">G</span></span><sub><span style="font-family: 宋体; font-size: small;">2n</span></sub><span style="font-family: 宋体; font-size: medium;">).
</span></span></p><p><span lang="EN-US"><span style="font-family: Calibri; font-size: medium;"> </span></span></p>.

Related Results

Complete (2,2) Bipartite Graphs
Complete (2,2) Bipartite Graphs
A bipartite graph G can be treated as a (1,1) bipartite graph in the sense that, no two vertices in the same part are at distance one from each other. A (2,2) bipartite graph is an...
Fidelity and entanglement of random bipartite pure states: insights and applications
Fidelity and entanglement of random bipartite pure states: insights and applications
Abstract We investigate the fidelity of Haar random bipartite pure states from a fixed reference quantum state and their bipartite entanglement. By plotting the fide...
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
AbstractIn processing of deep seismic reflection data, when the frequency band difference between the weak useful signal and noise both from the deep subsurface is very small and h...
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Abstract Introduction The exact manner in which large language models (LLMs) will be integrated into pathology is not yet fully comprehended. This study examines the accuracy, bene...
John Williams to Non-Williams
John Williams to Non-Williams
John Williams may have dominion over the Star Wars film scores with eighteen hours of music across nine films, but the mantle of responsibility for the Star Wars musical canon en m...
AN ENIGMA OF THE PRZYBYLSKI STAR
AN ENIGMA OF THE PRZYBYLSKI STAR
A new scenario to explain the Przybylski star phenomenon is proposed. It is based on the supposition that this star is a component of a binary system with a neutron star (similar t...
Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems
Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems
AbstractLeaf litter decomposition is a major ecosystem process that can link aquatic to terrestrial ecosystems by flows of nutrients. Biodiversity and ecosystem functioning researc...
Neighborhood Reconstruction and Cancellation of Graphs
Neighborhood Reconstruction and Cancellation of Graphs
We connect two seemingly unrelated problems in graph theory.Any graph $G$ has a neighborhood multiset $\mathscr{N}(G)= \{N(x) \mid x\in V(G)\}$ whose elements are precisely the ope...

Back to Top