Javascript must be enabled to continue!
Phytocompounds of Curcuma longa extract are more effective against bacterial biofilm than pure curcumin only: An in-vitro and in-silico analysis
View through CrossRef
Bioactive compounds are the group of secondary metabolites of plants that have a potent impact on antimicrobial and antibiofilm agents. Although Curcuma longa (turmeric) is well known for its antimicrobial activity, the question arises if curcumin, the primary bioactive compound is only responsible for it or the synergistic and simultaneous contribution of more than one bioactive compound are responsible for this antibiofilm efficacy. The research work aims to determine the efficacy of the extract Curcuma longa has a higher potential of antimicrobial and antibiofilm activity than the purchased curcumin and standard antibiotic. Present work was initiated with GC-MS analysis of the ethanolic extract of Curcuma longa (turmeric) and showed that in addition to curcumin, methyl palmitate de-hydro zingerone had a higher percent of availability within the extract. The in-silico studies also showed that when targeted upon Gram-positive biofilm-forming protein of Staphylococcus aureus (3TIP), curcumin alone had a binding constant value of -6.33 Kcal/mol but showed a value of -17.811 Kcal/mol when acted in association with Dehydrozingerone. Similarly, the binding constant's value changed from -6.07 Kcal/mol to - 23.844 Kcal/mol, when Gram-negative biofilm-forming protein (3ZYB) of Pseudomonas aeruginosa was acted upon by curcumin only and in association with methyl palmitate, respectively. Lower minimum inhibitory concentration (MIC) and higher effectivity in reducing the bacterial quorum sensing (QS) activity of the turmeric extract than pure Curcumin indicated the higher antimicrobial and antibiofilm efficiency of the extract, respectively. This indicated clearly that the synergistic action of all the bioactive compounds imparts the antibiofilm activity of turmeric. The result was further confirmed by the scanning electron microscopic (SEM) studies, fluorescent microscopic studies, and FTIR analysis of EPS as well.
Title: Phytocompounds of Curcuma longa extract are more effective against bacterial biofilm than pure curcumin only: An in-vitro and in-silico analysis
Description:
Bioactive compounds are the group of secondary metabolites of plants that have a potent impact on antimicrobial and antibiofilm agents.
Although Curcuma longa (turmeric) is well known for its antimicrobial activity, the question arises if curcumin, the primary bioactive compound is only responsible for it or the synergistic and simultaneous contribution of more than one bioactive compound are responsible for this antibiofilm efficacy.
The research work aims to determine the efficacy of the extract Curcuma longa has a higher potential of antimicrobial and antibiofilm activity than the purchased curcumin and standard antibiotic.
Present work was initiated with GC-MS analysis of the ethanolic extract of Curcuma longa (turmeric) and showed that in addition to curcumin, methyl palmitate de-hydro zingerone had a higher percent of availability within the extract.
The in-silico studies also showed that when targeted upon Gram-positive biofilm-forming protein of Staphylococcus aureus (3TIP), curcumin alone had a binding constant value of -6.
33 Kcal/mol but showed a value of -17.
811 Kcal/mol when acted in association with Dehydrozingerone.
Similarly, the binding constant's value changed from -6.
07 Kcal/mol to - 23.
844 Kcal/mol, when Gram-negative biofilm-forming protein (3ZYB) of Pseudomonas aeruginosa was acted upon by curcumin only and in association with methyl palmitate, respectively.
Lower minimum inhibitory concentration (MIC) and higher effectivity in reducing the bacterial quorum sensing (QS) activity of the turmeric extract than pure Curcumin indicated the higher antimicrobial and antibiofilm efficiency of the extract, respectively.
This indicated clearly that the synergistic action of all the bioactive compounds imparts the antibiofilm activity of turmeric.
The result was further confirmed by the scanning electron microscopic (SEM) studies, fluorescent microscopic studies, and FTIR analysis of EPS as well.
Related Results
Nghiên cứu bào chế curcumin dạng phytosome và dạng PEG hóa
Nghiên cứu bào chế curcumin dạng phytosome và dạng PEG hóa
Curcumin có nhiều tác dụng dược lý quan trọng nhưng chưa được ứng dụng nhiều trên lâm sàng do sinh khả dụng thấp. Phytosome curcumin và PEG-CUR được nghiên cứu để tăng sinh khả dụn...
Synthesis, characterization and evaluation of antibacterial activity of copper(II)-curcumin complex against staphylococcus aureus
Synthesis, characterization and evaluation of antibacterial activity of copper(II)-curcumin complex against staphylococcus aureus
Curcumin, a phytochemical from turmeric, and its derivatives have been extensively investigated from both chemical and biological strategies. However, the main problem encountered ...
Effects of Curcuma Longa Ethanol Extract on Isolated Guinea Pigthile Smooth Muscle in Acetylcholine Induction
Effects of Curcuma Longa Ethanol Extract on Isolated Guinea Pigthile Smooth Muscle in Acetylcholine Induction
Epidemiological studies show that nearly 20% of the world's population suffers from diseases related to allergies and asthma. The main compound of turmeric is curcumin has several ...
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract 1772: Circadian control of cell death in glioma cells treated with curcumin
Abstract
Treatments based on the phytochemical curcumin have much potential for use in cancer treatments because of their effects on a wide variety of biological pat...
Optogenetic Modulation of a Productive Biofilm for Improved Biotransformation
Optogenetic Modulation of a Productive Biofilm for Improved Biotransformation
<p>Biofilm as a living catalysts has been exploited for the production of biofuels and bioelectricity in microbial fuel cells (MFCs) as well as in the synthesis of bu...
Comparative study of the effect of neutrons emitted from neutron source 241Am-Be and curcumin on MCF-7 breast cancer cells in 3D culture medium
Comparative study of the effect of neutrons emitted from neutron source 241Am-Be and curcumin on MCF-7 breast cancer cells in 3D culture medium
AbstractIntroductionCancer is one of the major medical problems threatening human health. Breast cancer is the most prevalent type of cancer in women. Reports indicate that treatme...
Curcumin (Turmeric): A Carcinogenic, Miscarriage and Cirrhosis Causing Agent
Curcumin (Turmeric): A Carcinogenic, Miscarriage and Cirrhosis Causing Agent
Background: Curcumin, a compound derived from the turmeric plant (Curcuma longa), has been historically used in Asian cuisine and traditional medicine. It is known for its anti-inf...
Abstract 1856: Sustained release curcumin microparticles delay mammary tumorigenesis in BALB-neuT transgenic mice
Abstract 1856: Sustained release curcumin microparticles delay mammary tumorigenesis in BALB-neuT transgenic mice
Abstract
This work examined the chemopreventive efficacy of curcumin delivered by poly(lactide-co-glycolide) (PLGA) microparticles in a HER-2 transgenic mouse mammar...

