Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Heat stress combined with lipopolysaccharide induces pulmonary microvascular endothelial cell glycocalyx inflammatory damage in vitro

View through CrossRef
Heat stroke is a life-threatening disease with high mortality rate and unexpected complications. Vascular endothelial glycocalyx is essential for maintaining endothelial cell structure and function as well as preventing adhesion of inflammatory cells. Potential relationship that underlays the imbalance in inflammation and coagulation remains elusive. Moreover, the role of endothelial glycocalyx in heat stroke-induced organ injury remained unclear. Heat stress and lipopolysaccharide (LPS) are employed to construct in vitro models to study the change of glycocalyx structure and function in human pulmonary microvascular endothelial cells (HPMEC), as well as levels of heparansulfate proteoglycan (HSPG), syndecans-1, heparansulfate, TNF-α, IL-6, vWF, ET-1, Occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS). Here, we showed that heat stress and LPS devastated endothelial glycocalyx structure, activated endothelial glycocalyx degradation, and triggered oxidative damage in addition to apoptosis in HPMEC. Stimulation of heat stress and LPS increased HSPG, syndecans-1 (SDC-1), and heparansulfate levels, and promoted the ability to produce and release pro-inflammation cytokines (TNF-α, IL-6,) and coagulative factor (vWF, ET-1) in HPMEC. Furthermore, E-selectin, VCAM-1, and ROS expression were upregulated in contrast to Occludin downregulation. These changes could be deteriorated by Heparanase, whereas could be ameliorated by unfractionated heparin. This study highlights that heat stroke-induced endothelial glycocalyx degradation can trigger oxidative and apoptosis in HPMEC, in addition to dysfunction of inhibition of inflammatory response and protection in vascular permeability.
Title: Heat stress combined with lipopolysaccharide induces pulmonary microvascular endothelial cell glycocalyx inflammatory damage in vitro
Description:
Heat stroke is a life-threatening disease with high mortality rate and unexpected complications.
Vascular endothelial glycocalyx is essential for maintaining endothelial cell structure and function as well as preventing adhesion of inflammatory cells.
Potential relationship that underlays the imbalance in inflammation and coagulation remains elusive.
Moreover, the role of endothelial glycocalyx in heat stroke-induced organ injury remained unclear.
Heat stress and lipopolysaccharide (LPS) are employed to construct in vitro models to study the change of glycocalyx structure and function in human pulmonary microvascular endothelial cells (HPMEC), as well as levels of heparansulfate proteoglycan (HSPG), syndecans-1, heparansulfate, TNF-α, IL-6, vWF, ET-1, Occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS).
Here, we showed that heat stress and LPS devastated endothelial glycocalyx structure, activated endothelial glycocalyx degradation, and triggered oxidative damage in addition to apoptosis in HPMEC.
Stimulation of heat stress and LPS increased HSPG, syndecans-1 (SDC-1), and heparansulfate levels, and promoted the ability to produce and release pro-inflammation cytokines (TNF-α, IL-6,) and coagulative factor (vWF, ET-1) in HPMEC.
Furthermore, E-selectin, VCAM-1, and ROS expression were upregulated in contrast to Occludin downregulation.
These changes could be deteriorated by Heparanase, whereas could be ameliorated by unfractionated heparin.
This study highlights that heat stroke-induced endothelial glycocalyx degradation can trigger oxidative and apoptosis in HPMEC, in addition to dysfunction of inhibition of inflammatory response and protection in vascular permeability.

Related Results

MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Microwave Ablation with or Without Chemotherapy in Management of Non-Small Cell Lung Cancer: A Systematic Review
Microwave Ablation with or Without Chemotherapy in Management of Non-Small Cell Lung Cancer: A Systematic Review
Abstract Introduction  Microwave ablation (MWA) has emerged as a minimally invasive treatment for patients with inoperable non-small cell lung cancer (NSCLC). However, whether it i...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
GW24-e1182 Reduction of ABCG1 promotes endothelial apoptosis associated with activation of endoplasmic reticulum stress
GW24-e1182 Reduction of ABCG1 promotes endothelial apoptosis associated with activation of endoplasmic reticulum stress
Objectives Endothelial cell injury is a key event in the pathogenesis of atherosclerosis. There is now increasing evidence that excess lipid accumualtion can indu...
Hypoxia aggravates lipopolysaccharide-induced lung injury
Hypoxia aggravates lipopolysaccharide-induced lung injury
SummaryThe animal model of inflammatory response induced by intratracheal application of lipopolysaccharide includes many typical features of acute lung injury or the acute respira...

Back to Top