Javascript must be enabled to continue!
A comparative study of radiocarbon dating on terrestrial organisms and fish from Qinghai Lake in the northeastern Tibetan Plateau, China
View through CrossRef
Qinghai Lake is the largest lake on the Tibetan Plateau (TP) and in China and has been a focus of paleoenvironmental and climatic research for decades. However, limited understanding of lake 14C reservoir effects (LRE) has led to inconsistent interpretations among proxies of different sediment cores. As such, the onset of LRE variability during the Holocene is still unclear. 14C dating of archeological samples from four locations (Gangcha, Shaliuheqiaoxi, and Shinaihai sites, and Niaodao section) including naked carp ( Gymnocypris przewalskii, Kessler) fish bones, animal bones and teeth, and charcoal was employed to estimate variations in LRE over the last few thousand years. LRE offsets calculated as the difference between LRE of animal bones and fish bones are more reliable than that of charcoal and fish bones due to the ‘old wood’ effect in charcoal. LRE offsets recorded in fish bones were ~0.5, ~0.6, and ~0.7 ka during the periods of 3.0–3.4 cal ka BP, 0.58–0.60 cal ka BP, and modern lake times, respectively, which may indicate a temporal minimum LRE offset. Unlike the wide spatial variations of LRE ages obtained from surface total organic carbon (TOC) samples of the modern Qinghai Lake, LRE offsets from the three contemporaneous locations in Qinghai Lake were all ~0.5 ka, suggesting efficient carbon mixing occurred in naked carp. However, the late-Holocene (~3.1 ka BP) LRE increased slightly with increasing salinity and decreasing lake level.
SAGE Publications
Title: A comparative study of radiocarbon dating on terrestrial organisms and fish from Qinghai Lake in the northeastern Tibetan Plateau, China
Description:
Qinghai Lake is the largest lake on the Tibetan Plateau (TP) and in China and has been a focus of paleoenvironmental and climatic research for decades.
However, limited understanding of lake 14C reservoir effects (LRE) has led to inconsistent interpretations among proxies of different sediment cores.
As such, the onset of LRE variability during the Holocene is still unclear.
14C dating of archeological samples from four locations (Gangcha, Shaliuheqiaoxi, and Shinaihai sites, and Niaodao section) including naked carp ( Gymnocypris przewalskii, Kessler) fish bones, animal bones and teeth, and charcoal was employed to estimate variations in LRE over the last few thousand years.
LRE offsets calculated as the difference between LRE of animal bones and fish bones are more reliable than that of charcoal and fish bones due to the ‘old wood’ effect in charcoal.
LRE offsets recorded in fish bones were ~0.
5, ~0.
6, and ~0.
7 ka during the periods of 3.
0–3.
4 cal ka BP, 0.
58–0.
60 cal ka BP, and modern lake times, respectively, which may indicate a temporal minimum LRE offset.
Unlike the wide spatial variations of LRE ages obtained from surface total organic carbon (TOC) samples of the modern Qinghai Lake, LRE offsets from the three contemporaneous locations in Qinghai Lake were all ~0.
5 ka, suggesting efficient carbon mixing occurred in naked carp.
However, the late-Holocene (~3.
1 ka BP) LRE increased slightly with increasing salinity and decreasing lake level.
Related Results
Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
Evolution of an Ancient Large Lake in the Southeast of the Northern Tibetan Plateau
Evolution of an Ancient Large Lake in the Southeast of the Northern Tibetan Plateau
Abstract Nam Co is the largest (1920 km2 in area) and highest (4718 m above sea level) lake in Tibet. According to the discovery of lake terraces and highstand lacustrine deposits...
Observational studies of water surface Evaporation on inland lake over the classical Tibetan Plateau
Observational studies of water surface Evaporation on inland lake over the classical Tibetan Plateau
To understand how the changing process of lake water level and area in Tibetan Plateau effects on the dynamic process of water resources in the surrounding area is very important. ...
Definition of the Quaternary Qiangtang Paleolake in Qinghai‐Tibetan Plateau, China
Definition of the Quaternary Qiangtang Paleolake in Qinghai‐Tibetan Plateau, China
Abstract:Since the Quaternary, many lakes have been present in the Qinghai‐Tibetan Plateau. As peculiar geological processes in the evolution of the uplifting of Qinghai‐Tibetan Pl...
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods
The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species’ adaptability to environ...
Geomorphology of the lakebed and sediment deposition during the Holocene in Lake Visovac
Geomorphology of the lakebed and sediment deposition during the Holocene in Lake Visovac
<p>Lake Visovac is a tufa barrier lake on the Krka River between Ro&#353;ki slap (60 m asl) and Skradinski buk (46 m absl) waterfalls, included in the Krka na...
Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period AD 1450-2001
Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period AD 1450-2001
We analyzed spatial and temporal growth variations of Qilian Junipers over the northeastern Tibetan Plateau (TP) during the period 1450—2001 by applying the empirical orthogonal fu...
Thrust Propagation in the Aqqikkol Lake Area, the East Kunlun Mountains, Northwestern China
Thrust Propagation in the Aqqikkol Lake Area, the East Kunlun Mountains, Northwestern China
Abstract The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we hav...

