Javascript must be enabled to continue!
Thermodynamics of High Temperature Plasmas
View through CrossRef
In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point) admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as well as on the linearly unstable side of the marginal point. The paper discusses the relation between the variations of the entropy functional defined on statistical grounds and the motion of the underlying system of particles. It is found that the vanishing of the first variation of the entropy is connected, under certain assumptions, with the Hamilton’s principle, while the second variation is not directly related to the dynamics but is an expression of the fact that the entropy is a predictive tool based on probability and information.
Title: Thermodynamics of High Temperature Plasmas
Description:
In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.
The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system.
In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations.
In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy.
The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point) admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system.
In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as well as on the linearly unstable side of the marginal point.
The paper discusses the relation between the variations of the entropy functional defined on statistical grounds and the motion of the underlying system of particles.
It is found that the vanishing of the first variation of the entropy is connected, under certain assumptions, with the Hamilton’s principle, while the second variation is not directly related to the dynamics but is an expression of the fact that the entropy is a predictive tool based on probability and information.
Related Results
Hybrid Plasmas for Materials Processing
Hybrid Plasmas for Materials Processing
Hybrid plasmas have been reported in various areas of research over the last 40 years. However, a general overview of hybrid plasmas has never been presented or reported. In the pr...
A study of one-dimensional colliding laser-produced plasmas through modeling and experimentation
A study of one-dimensional colliding laser-produced plasmas through modeling and experimentation
An investigation was conducted into two colliding laser-produced plasmas collimated by two face-to-face channels, which makes the plasmas close to one-dimensional (1-D) and thus ea...
Performance Experiment of Ultra high Temperature Cementing Slurry System
Performance Experiment of Ultra high Temperature Cementing Slurry System
Abstract
The continuous development of oil and gas exploration and development to deep and ultra deep wells in China, the formation temperature is also getting higher and h...
A New Frame Work of Thermodynamics (1) Traditional Thermodynamics, (2) Thermodynamics of Thermal Electrons in a Static Magnetic Field, (3) Cosmos Thermodynamics
A New Frame Work of Thermodynamics (1) Traditional Thermodynamics, (2) Thermodynamics of Thermal Electrons in a Static Magnetic Field, (3) Cosmos Thermodynamics
This new frame work of thermodynamics contains three parts. First, the traditional thermodynamics: relating to all the ordinary thermodynamical processes we meet in our daily life ...
In Situ Fourier Transform Infrared Measurements of Si Surface and Bulk Plasmas in Cl2/O2 and HBr/O2 Electron Cyclotron Resonance Plasma Etching: Influence of Oxygen on Reaction Products
In Situ Fourier Transform Infrared Measurements of Si Surface and Bulk Plasmas in Cl2/O2 and HBr/O2 Electron Cyclotron Resonance Plasma Etching: Influence of Oxygen on Reaction Products
In situ Fourier transform infrared (FTIR) absorption spectroscopy, electrostatic probe measurements and optical emission spectroscopy have been used to investigate reaction produc...
RELATIONSHIP OF NON-EQUILIBRIUM THERMODYNAMICS IN THE HETEROGENEOUS PERMEABLE THERMOELEMENTS
RELATIONSHIP OF NON-EQUILIBRIUM THERMODYNAMICS IN THE HETEROGENEOUS PERMEABLE THERMOELEMENTS
A significant number of thermoelectric processes are described with fundamental law of thermodynamics. This paper describes thermoelectric processes in the permea...
Studying a Non-Collisional Plasma with Superstatistics considerations.
Studying a Non-Collisional Plasma with Superstatistics considerations.
It is widely acknowledged that the statistical properties of space plasmas often deviate from canonical distributions, such as Maxwell-Boltzmann or Jüttner, which are appl...


