Javascript must be enabled to continue!
Weakly J-ideals of commutative rings
View through CrossRef
Let R be a commutative ring with non-zero identity. In this paper, we introduce the concept of weakly J-ideals as a new generalization of J-ideals. We call a proper ideal I of a ring R a weakly J-ideal if whenever a,b ? R with 0 ? ab ? I and a ? J(R), then b ? I. Many of the basic properties and characterizations of this concept are studied. We investigate weakly J-ideals under various contexts of constructions such as direct products, localizations, homomorphic images. Moreover, a number of examples and results on weakly J-ideals are discussed. Finally, the third section is devoted to the characterizations of these constructions in an amalgamated ring along an ideal.
Title: Weakly J-ideals of commutative rings
Description:
Let R be a commutative ring with non-zero identity.
In this paper, we introduce the concept of weakly J-ideals as a new generalization of J-ideals.
We call a proper ideal I of a ring R a weakly J-ideal if whenever a,b ? R with 0 ? ab ? I and a ? J(R), then b ? I.
Many of the basic properties and characterizations of this concept are studied.
We investigate weakly J-ideals under various contexts of constructions such as direct products, localizations, homomorphic images.
Moreover, a number of examples and results on weakly J-ideals are discussed.
Finally, the third section is devoted to the characterizations of these constructions in an amalgamated ring along an ideal.
Related Results
On Weakly S-Primary Ideals of Commutative Rings
On Weakly S-Primary Ideals of Commutative Rings
Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. The purpose of this paper is to introduce the concept of weakly S-primary ideals as a new ...
S-Ideals: A Unified Framework for Ideal Structures via Multiplicatively Closed Subsets
S-Ideals: A Unified Framework for Ideal Structures via Multiplicatively Closed Subsets
In this paper, we study ideals defined with respect to arbitrary multiplicatively closed subsets S⊆R of a commutative ring R. An ideal I⊆R is called an S-ideal if for all a,b∈R, th...
ATTACHED PRIMES UNDER SKEW POLYNOMIAL EXTENSIONS
ATTACHED PRIMES UNDER SKEW POLYNOMIAL EXTENSIONS
In the author's work [S. A. Annin, Attached primes over noncommutative rings, J. Pure Appl. Algebra212 (2008) 510–521], a theory of attached prime ideals in noncommutative rings wa...
Weakly 2‐Absorbing Ideals in Almost Distributive Lattices
Weakly 2‐Absorbing Ideals in Almost Distributive Lattices
The concepts of weakly 2‐absorbing ideal and weakly 1‐absorbing prime ideal in an almost distributive lattice (ADL) are introduced, and the necessary conditions for a weakly 1‐abso...
A Novel Method for Developing Post-quantum Digital Signature Algorithms on Non-commutative Associative Algebras
A Novel Method for Developing Post-quantum Digital Signature Algorithms on Non-commutative Associative Algebras
Introduction: Development of practical post-quantum signature algorithms is a current challenge in the area of cryptography. Recently, several candidates on post-quantum signature ...
Applications of Fuzzy Semiprimary Ideals under Group Action
Applications of Fuzzy Semiprimary Ideals under Group Action
Group actions are a valuable tool for investigating the symmetry and automorphism features of rings. The concept of fuzzy ideals in rings has been expanded with the introduction of...
Dreipassen – en magisk genstand?
Dreipassen – en magisk genstand?
The trefoil – a magical object?In 1997, a trefoil was found in a cremation pit at Bilstrup near Skive in Viborg county. The other grave goods, comprising fragments of arm rings and...
A Kurosh-Amitsur Completely Prime Radical for Near-rings
A Kurosh-Amitsur Completely Prime Radical for Near-rings
Two generalizations of the completely prime radical of rings to near-rings, namely the completely prime radical of near-rings and the completely equiprime radical of near-rings wer...

