Javascript must be enabled to continue!
Cholesterol regulates insulin-induced mTORC1 signaling
View through CrossRef
ABSTRACT
The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Furthermore, we identify that fibroblasts from individuals with Smith–Lemli–Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin–mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
The Company of Biologists
Title: Cholesterol regulates insulin-induced mTORC1 signaling
Description:
ABSTRACT
The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear.
Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling.
The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells.
In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1.
We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling.
Furthermore, we identify that fibroblasts from individuals with Smith–Lemli–Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin–mTORC1 growth axis.
These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1.
Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
Related Results
New and simple Ohmic definition of insulin resistance in lean and obese subjects
New and simple Ohmic definition of insulin resistance in lean and obese subjects
objective:: Insulin enhances the influx of glucose into cells. However, the relationship between glucose and insulin is complex and insulin sensitivity varies widely with age, ethn...
Spatially and Functionally Distinct mTORC1 Entities Orchestrate the Cellular Response to Amino Acid Availability
Spatially and Functionally Distinct mTORC1 Entities Orchestrate the Cellular Response to Amino Acid Availability
AbstractAmino acid (AA) availability is a robust determinant of cell growth, through controlling mTORC1 activity1. According to the predominant model in the field, AA sufficiency d...
A Case of Insulin Resistance Secondary to Insulin Induced Localized Cutaneous Amyloidosis.
A Case of Insulin Resistance Secondary to Insulin Induced Localized Cutaneous Amyloidosis.
Abstract
Abstract 4908
Insulin resistance can be a major problem in patients with diabetes mellitus. Although multiple reasons can result in this prob...
Iron Restriction Alleviates β-Thalassemia By Stimulating ULK1-Mediated Autophagy of Free α-Globin
Iron Restriction Alleviates β-Thalassemia By Stimulating ULK1-Mediated Autophagy of Free α-Globin
In β-thalassemia, mutations in the HBB gene cause reduced β-globin synthesis with accumulation of toxic free α-globin, leading to ineffective erythropoiesis and hemolysis. We showe...
KELCH-3 (KLHL3): A Potential Regulator of Insulin-Induced Renal
Haemodynamic Alterations in Obesity
KELCH-3 (KLHL3): A Potential Regulator of Insulin-Induced Renal
Haemodynamic Alterations in Obesity
Background: The contribution of elevated insulin levels to renal
disease in pre-diabetic obesity remains underappreciated, as glomerular
...
Expression and polymorphism of genes in gallstones
Expression and polymorphism of genes in gallstones
ABSTRACT
Through the method of clinical case control study, to explore the expression and genetic polymorphism of KLF14 gene (rs4731702 and rs972283) and SR-B1 gene (rs...
Abstract 1721: FOXO1, a downstream substrate of AKT, function as tumor suppressor in HCC carcinogenesis
Abstract 1721: FOXO1, a downstream substrate of AKT, function as tumor suppressor in HCC carcinogenesis
Abstract
Hepatocellular carcinoma (HCC) represents the fifth most common tumor types in the world and the third leading cause of cancer-related death. However, the s...
Redox Paradox
Redox Paradox
Propelled by the identification of a small family of NADPH oxidase (Nox) enzyme homologs that produce superoxide in response to cellular stimulation with various growth factors, re...

