Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Novel Poly(vinyl alcohol)/Chitosan/Modified Graphene Oxide Biocomposite for Wound Dressing Application

View through CrossRef
AbstractRapid absorption of wound exudate and prevention of wound infection are prerequisites for wound dressing to accelerate wound healing. In this study, a novel kind of promising wound dressing is developed by incorporating polyhexamethylene guanidine (PHMG)‐modified graphene oxide (mGO) into the poly(vinyl alcohol)/chitosan (PVA/CS) matrix, conferring the dressing the required mechanical properties, higher water vapor transmission rate (WVTR), less swelling time, improved antibacterial activity, and more cell proliferation compared to the PVA/CS film crosslinked by genipin. In vivo experiments indicate that the PVA/CS/mGO composite film can accelerate wound healing via enhancement of the re‐epithelialization. PVA/CS/mGO composite film with 0.5 wt% mGO sheets displays the best wound healing properties, as manifested by the 50% higher antibacterial rate compared to GO and the wound healing rate of the mouse using this dressing is about 41% faster than the control group and 31% faster than the pure PVA/CS dressing. The underlying mechanism of the accelerated wound healing properties may be a result of the improved antibacterial ability to eradicate pathogenic bacteria on the wound area and maintain an appropriate moist aseptic wound healing environment to accelerate re‐epithelialization. These findings suggest that this novel composite PVA/CS/mGO film may have promising applications in wound dressing.
Title: Novel Poly(vinyl alcohol)/Chitosan/Modified Graphene Oxide Biocomposite for Wound Dressing Application
Description:
AbstractRapid absorption of wound exudate and prevention of wound infection are prerequisites for wound dressing to accelerate wound healing.
In this study, a novel kind of promising wound dressing is developed by incorporating polyhexamethylene guanidine (PHMG)‐modified graphene oxide (mGO) into the poly(vinyl alcohol)/chitosan (PVA/CS) matrix, conferring the dressing the required mechanical properties, higher water vapor transmission rate (WVTR), less swelling time, improved antibacterial activity, and more cell proliferation compared to the PVA/CS film crosslinked by genipin.
In vivo experiments indicate that the PVA/CS/mGO composite film can accelerate wound healing via enhancement of the re‐epithelialization.
PVA/CS/mGO composite film with 0.
5 wt% mGO sheets displays the best wound healing properties, as manifested by the 50% higher antibacterial rate compared to GO and the wound healing rate of the mouse using this dressing is about 41% faster than the control group and 31% faster than the pure PVA/CS dressing.
The underlying mechanism of the accelerated wound healing properties may be a result of the improved antibacterial ability to eradicate pathogenic bacteria on the wound area and maintain an appropriate moist aseptic wound healing environment to accelerate re‐epithelialization.
These findings suggest that this novel composite PVA/CS/mGO film may have promising applications in wound dressing.

Related Results

Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Exploiting potency of negative pressure in wound dressing using limited access dressing and suction-assisted dressing
Exploiting potency of negative pressure in wound dressing using limited access dressing and suction-assisted dressing
ABSTRACTRole of negative pressure dressing and moist wound healing are well established in the treatment of both acute and chronic wounds with certain advantages and disadvantages ...
Flight Safety - Alcohol Detection assisted by AI Facial Recognition Technology
Flight Safety - Alcohol Detection assisted by AI Facial Recognition Technology
The Federal Aviation Administration’s (FAA) “Bottle to Throttle” rule requires that a pilot may not use alcohol within 8 hours of a flight and cannot have a blood alcohol content a...
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
Background: Membrane materials for surgical procedures using Guided Tissue Regeneration (GTR) are Polytetrafluoroethylene (PTFE) and collagen, but have the disadvantage of requirin...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...

Back to Top