Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Evolution of magmatic-hydrothermal system of the Kalaxiange’er porphyry copper belt and implications for ore formation (Xinjiang, China)

View through CrossRef
Abstract The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits. The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene). The mineralized porphyries are characterized by almost identical REE and trace element patterns. The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma. The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.703790–0.704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.8 to 8.4 and is similar to that of MORB. These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment. The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of −2 to −4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later. The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin. According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.2 ± 8.7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.9 ± 4.2 Ma), expressed as superposed hydrothermal mineralization. The Re–Os isotope data on molybdenite (376.9 ± 2.2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization. The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.
Title: Evolution of magmatic-hydrothermal system of the Kalaxiange’er porphyry copper belt and implications for ore formation (Xinjiang, China)
Description:
Abstract The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits.
The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene).
The mineralized porphyries are characterized by almost identical REE and trace element patterns.
The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma.
The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.
703790–0.
704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.
8 to 8.
4 and is similar to that of MORB.
These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment.
The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of −2 to −4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later.
The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin.
According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.
2 ± 8.
7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.
9 ± 4.
2 Ma), expressed as superposed hydrothermal mineralization.
The Re–Os isotope data on molybdenite (376.
9 ± 2.
2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization.
The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.

Related Results

Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Porphyry-style mineralisation occurs chiefly as a consequence of the release of large volumes of metal-bearing aqueous brine during the cooling and crystallization of plutonic and ...
Hydrothermal Alteration and Mineralization of Middle Jurassic Dexing Porphyry Cu‐Mo Deposit, Southeast China
Hydrothermal Alteration and Mineralization of Middle Jurassic Dexing Porphyry Cu‐Mo Deposit, Southeast China
AbstractThe Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consis...
Effects of Magmatic-Hydrothermal Activities on Characteristic of Source Rocks from Beipiao Formation in the Jinyang Basin, NE China
Effects of Magmatic-Hydrothermal Activities on Characteristic of Source Rocks from Beipiao Formation in the Jinyang Basin, NE China
The Jinyang Basin is a typical volcanic-sedimentary basin, located in the southern peripheral area of the Songliao Basin. Hydrothermal activity is often closely related to the intr...
Metallogenic Model and Prospecting Progress of the Qiandongshan–Dongtangzi Large Pb-Zn Deposit, Fengtai Orefield, West Qinling Orogeny
Metallogenic Model and Prospecting Progress of the Qiandongshan–Dongtangzi Large Pb-Zn Deposit, Fengtai Orefield, West Qinling Orogeny
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contac...

Back to Top