Javascript must be enabled to continue!
Cross-Platform Binary Code Homology Analysis Based on GRU Graph Embedding
View through CrossRef
Binary code homology analysis refers to detecting whether two pieces of binary code are compiled from the same piece of source code, which is a fundamental technique for many security applications, such as vulnerability search, plagiarism detection, and malware detection. With the increase in critical vulnerabilities in IoT devices, homology analysis is increasingly needed to perform cross-platform vulnerability searches. Existing methods for cross-platform binary code homology detection usually convert binary code to instruction sequences and do semantic embedding of the sequences as if they were natural language. However, the gap between natural language and binary code is large, and the spatial features of the binary code are easily lost by directly comparing the semantics. In this paper, we propose a GRU-based graph embedding method to compare the homology of binary functions. First, the attribute control flow graph (ACFG) is built for the assembly function, then the GRU-based graph embedding neural network is used to generate the embedding vector for the ACFG, and finally the homology of the binary code is determined by calculating the distance between the embedding vectors. The experimental results show that our method greatly improves the detection accuracy of negative samples compared with Gemini, the latest method based on graph embedding binary code similarity detection.
Title: Cross-Platform Binary Code Homology Analysis Based on GRU Graph Embedding
Description:
Binary code homology analysis refers to detecting whether two pieces of binary code are compiled from the same piece of source code, which is a fundamental technique for many security applications, such as vulnerability search, plagiarism detection, and malware detection.
With the increase in critical vulnerabilities in IoT devices, homology analysis is increasingly needed to perform cross-platform vulnerability searches.
Existing methods for cross-platform binary code homology detection usually convert binary code to instruction sequences and do semantic embedding of the sequences as if they were natural language.
However, the gap between natural language and binary code is large, and the spatial features of the binary code are easily lost by directly comparing the semantics.
In this paper, we propose a GRU-based graph embedding method to compare the homology of binary functions.
First, the attribute control flow graph (ACFG) is built for the assembly function, then the GRU-based graph embedding neural network is used to generate the embedding vector for the ACFG, and finally the homology of the binary code is determined by calculating the distance between the embedding vectors.
The experimental results show that our method greatly improves the detection accuracy of negative samples compared with Gemini, the latest method based on graph embedding binary code similarity detection.
Related Results
Reflexive homology
Reflexive homology
Reflexive homology is the homology theory associated to the reflexive crossed simplicial group; one of the fundamental crossed simplicial groups. It is the most general way to exte...
High-precision blood glucose prediction and hypoglycemia warning based on the LSTM-GRU model
High-precision blood glucose prediction and hypoglycemia warning based on the LSTM-GRU model
Objective: The performance of blood glucose prediction and hypoglycemia warning based on the LSTM-GRU (Long Short Term Memory - Gated Recurrent Unit) model was evaluated. Methods: ...
Joint Beamforming and Aerial IRS Positioning Design for IRS-assisted MISO System with Multiple Access Points
Joint Beamforming and Aerial IRS Positioning Design for IRS-assisted MISO System with Multiple Access Points
<p><code>Intelligent reflecting surface (IRS) is a promising concept for </code><code><u>6G</u></code><code> wireless communications...
Joint Beamforming and Aerial IRS Positioning Design for IRS-assisted MISO System with Multiple Access Points
Joint Beamforming and Aerial IRS Positioning Design for IRS-assisted MISO System with Multiple Access Points
<p><code>Intelligent reflecting surface (IRS) is a promising concept for </code><code><u>6G</u></code><code> wireless communications...
Daily streamflow forecasting by machine learning in Tra Khuc river in Vietnam
Daily streamflow forecasting by machine learning in Tra Khuc river in Vietnam
Precise streamflow prediction is crucial in the optimization of the distribution of water resources. This study develops the machine learning models by integrating recurrent gate u...
Design of Malicious Code Detection System Based on Binary Code Slicing
Design of Malicious Code Detection System Based on Binary Code Slicing
<p>Malicious code threatens the safety of computer systems. Researching malicious code design techniques and mastering code behavior patterns are the basic work of network se...
Abstract 902: Explainable AI: Graph machine learning for response prediction and biomarker discovery
Abstract 902: Explainable AI: Graph machine learning for response prediction and biomarker discovery
Abstract
Accurately predicting drug sensitivity and understanding what is driving it are major challenges in drug discovery. Graphs are a natural framework for captu...
Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques
Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques
The subject of sentiment analysis through social media sites has witnessed significant development due to the increasing reliance of people on social media in advertising and marke...

