Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A consistent generalized model-based lattice Boltzmann flux solver for incompressible porous flows

View through CrossRef
The recently developed lattice Boltzmann flux solver (PLBFS) for the incompressible porous flow is free from the limitations of coupled streaming time step and the mesh spacing, and the uniform meshes and the complex distribution function treatment at the boundary. However, the local flux reconstruction is inconsistent with the global governing equations in PLBFS. To overcome the drawback, a consistent generalized lattice Boltzmann flux solver for the incompressible porous flow is proposed based on the generalized lattice Boltzmann method (GLBM). The recovered macroscopic governing equations given by the Chapman–Enskog analysis of GLBM are globally resolved by the finite volume method. Specifically, the macroscopic variables are updated at cell centers using the three-step Runge–Kutta method, while the solution of the GLBM is locally applied for the fluxes reconstruction at cell interfaces. Unlike the PLBFS, the forcing term can be naturally incorporated into the interface fluxes reconstruction, which gives the present method a stronger physical basis and ensures global consistency. Moreover, different from the PLBFS, the streaming time step used at the cell interface is decoupled from the updating time step at the cell center in the present solver. Furthermore, a simplified flux reconstruction strategy is proposed to avoid complex calculations and save computing resources. Several numerical examples have been adopted to test the proposed method. The simulations of the nonlinear lid-driven cavity flow show that our method is more accurate than the original PLBFS. Results also demonstrate that the simplified method can reduce the computational time by 43%.
Title: A consistent generalized model-based lattice Boltzmann flux solver for incompressible porous flows
Description:
The recently developed lattice Boltzmann flux solver (PLBFS) for the incompressible porous flow is free from the limitations of coupled streaming time step and the mesh spacing, and the uniform meshes and the complex distribution function treatment at the boundary.
However, the local flux reconstruction is inconsistent with the global governing equations in PLBFS.
To overcome the drawback, a consistent generalized lattice Boltzmann flux solver for the incompressible porous flow is proposed based on the generalized lattice Boltzmann method (GLBM).
The recovered macroscopic governing equations given by the Chapman–Enskog analysis of GLBM are globally resolved by the finite volume method.
Specifically, the macroscopic variables are updated at cell centers using the three-step Runge–Kutta method, while the solution of the GLBM is locally applied for the fluxes reconstruction at cell interfaces.
Unlike the PLBFS, the forcing term can be naturally incorporated into the interface fluxes reconstruction, which gives the present method a stronger physical basis and ensures global consistency.
Moreover, different from the PLBFS, the streaming time step used at the cell interface is decoupled from the updating time step at the cell center in the present solver.
Furthermore, a simplified flux reconstruction strategy is proposed to avoid complex calculations and save computing resources.
Several numerical examples have been adopted to test the proposed method.
The simulations of the nonlinear lid-driven cavity flow show that our method is more accurate than the original PLBFS.
Results also demonstrate that the simplified method can reduce the computational time by 43%.

Related Results

Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type
Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type
Micro-scale flow is a very important and prominent problem in the design and application of micro-electromechanical systems. With the decrease of the scale, effects, such as viscou...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
The Lattice Boltzmann Equation
The Lattice Boltzmann Equation
Abstract Over the past near three decades, the Lattice Boltzmann method has gained a prominent role as an efficient computational method for the numerical simulation...
Perilaku Beton Porous Dengan Penambahan Zat Aditif Superplastizer (Sika Viscocrete)
Perilaku Beton Porous Dengan Penambahan Zat Aditif Superplastizer (Sika Viscocrete)
ABSTRACT According to ACI 522R-10, Larvious Concrete, or Pervious Concrete is defined as concrete that has a slump value almost close to zero, which is formed from Portland cement,...
Establishment and Application of the Multi-Peak Forecasting Model
Establishment and Application of the Multi-Peak Forecasting Model
Abstract After the development of the oil field, it is an important task to predict the production and the recoverable reserve opportunely by the production data....
Gas Separation by Using Spiral Wound Membrane
Gas Separation by Using Spiral Wound Membrane
Spiral wound membrane is used in several industrial purification processes such as desalination, food industries and gas separation. It has been shown that membrane performance cou...
Computational vademecums for lattice materials using algebraic PGD
Computational vademecums for lattice materials using algebraic PGD
This dissertation is motivated by the concept of materials by design. Focusing on structures, this states that the properties in a mechanical component are not only inherited by it...
Heat Transfer Enhancement Using Unidirectional Porous Media under High Heat Flux Conditions
Heat Transfer Enhancement Using Unidirectional Porous Media under High Heat Flux Conditions
In this chapter, new heat transfer enhancement technologies with unidirectional porous metal called “EVAPORON” and “Lotus’ Breathing” are introduced to remove and manage heat from ...

Back to Top