Javascript must be enabled to continue!
Unveiling heterogeneity of hysteresis in perovskite thin films
View through CrossRef
AbstractThe phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
Title: Unveiling heterogeneity of hysteresis in perovskite thin films
Description:
AbstractThe phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability.
Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate.
By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices.
Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined.
This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material.
Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.
24.
The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries.
Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics.
By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects.
This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity.
This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
Related Results
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
Investigation of Degradation of Organometal Halide Perovskite Film and Solar Cell
Investigation of Degradation of Organometal Halide Perovskite Film and Solar Cell
Organometal hybrid perovskite material has emerged as an attractive competitor in the field of photovoltaics due to its promising potential of low-cost and high-efficiency photovol...
Enabling Continuous Processing of Perovskite Solar Cells
Enabling Continuous Processing of Perovskite Solar Cells
The perovskite solar cell since its introduction in 2010 has received a great deal of attention with efficiencies exceeding 20%, the highest for a solution deposited device. This i...
Development of Solution-Processed Perovskite Semiconductors Lasers
Development of Solution-Processed Perovskite Semiconductors Lasers
Lead halide perovskite is a new photovoltaic material with excellent material characteristics, such as high optical absorption coefficient, long carrier transmission length, long c...
Interface engineering approaches for efficient and robust perovskite solar cells
Interface engineering approaches for efficient and robust perovskite solar cells
The field of perovskite photovoltaics has been witnessing a surge of interest over the past few years across the breadth of advanced nanomaterials, nanoscience and nanotechnology. ...
Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells
Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells
The development of highly efficient and low-cost solar cells is the key to large-scale application of solar photovoltaic technology. In recent years, the solution-processed organic...
Spray Coated Nanocellulose Films Productions, Characterization and Application
Spray Coated Nanocellulose Films Productions, Characterization and Application
Nanocellulose (NC) is a biodegradable, renewable and sustainable material. It has strong potential to use as a functional material in various applications such as barriers, coating...
PEROVSKITE SOLAR CELLS AND THEIR TYPES
PEROVSKITE SOLAR CELLS AND THEIR TYPES
Perovskite photovoltaic compartments have garnered momentous consideration in photovoltaics owing to their easy manufacturing process and high efficiency. The optoelectronic proper...

