Javascript must be enabled to continue!
Cycle-consistent Generative Adversarial Networks (CycleGANs) for the Non-Parallel Creation of Fake Voice Media
View through CrossRef
The upsurge of Generative Adversarial Networks (GANs) in the previous five years has led to advancements in unsupervised data manipulation, sourced feature translation, and precise input-output synthesis through a competitive optimization of the discriminator and generator networks. More specifically, the recent rise of cycle-consistent GANs enables style transfers from a discrete source (input A) to target domain (input B) by preprocessing object features for a multi-discriminative adversarial network. Traditionally, cyclical adversarial networks have been exploited for unpaired image-to-image translation and domain adaptation by determining mapped relationships between an input A graphic and an input B graphic. However, this integral mechanism of domain adaptation can be applied to the complex acoustical features of human speech. Although well-established datasets, such as the 2018 Voice Conversion Challenge repository, paved way for female-male voice transformation, cycle-GANs have rarely been re-engineered for voices outside the datasets. More critically, cycle-GANs have massive potential to extract surface-level and hidden feature to distort an input A source into a texturally unrelated target voice. By preprocessing, compressing, and packaging unique acoustical voice properties, CycleGANs can learn to decompose speech signals and implement new translation models while preserving emotion, the intent of words, rhythm, and accents. Due to the potential of CycleGAN’s autoencoder in realistic unsupervised voice-voice conversion/feature adaptation, the researchers raise the ethical implications of controlling source input A to manipulate target voice B, particularly in cases of defamation and sabotage of target B’s words. This paper analyzes the potential of cycle-consistent GANs in deceptive voice-voice conversion by manipulating interview excerpts of political candidates.
Title: Cycle-consistent Generative Adversarial Networks (CycleGANs) for the Non-Parallel Creation of Fake Voice Media
Description:
The upsurge of Generative Adversarial Networks (GANs) in the previous five years has led to advancements in unsupervised data manipulation, sourced feature translation, and precise input-output synthesis through a competitive optimization of the discriminator and generator networks.
More specifically, the recent rise of cycle-consistent GANs enables style transfers from a discrete source (input A) to target domain (input B) by preprocessing object features for a multi-discriminative adversarial network.
Traditionally, cyclical adversarial networks have been exploited for unpaired image-to-image translation and domain adaptation by determining mapped relationships between an input A graphic and an input B graphic.
However, this integral mechanism of domain adaptation can be applied to the complex acoustical features of human speech.
Although well-established datasets, such as the 2018 Voice Conversion Challenge repository, paved way for female-male voice transformation, cycle-GANs have rarely been re-engineered for voices outside the datasets.
More critically, cycle-GANs have massive potential to extract surface-level and hidden feature to distort an input A source into a texturally unrelated target voice.
By preprocessing, compressing, and packaging unique acoustical voice properties, CycleGANs can learn to decompose speech signals and implement new translation models while preserving emotion, the intent of words, rhythm, and accents.
Due to the potential of CycleGAN’s autoencoder in realistic unsupervised voice-voice conversion/feature adaptation, the researchers raise the ethical implications of controlling source input A to manipulate target voice B, particularly in cases of defamation and sabotage of target B’s words.
This paper analyzes the potential of cycle-consistent GANs in deceptive voice-voice conversion by manipulating interview excerpts of political candidates.
Related Results
Analisis Saddu Dzari’ah terhadap Penggunaan Aplikasi Fake Global Positioning System (GPS) pada Shopeefood Driver
Analisis Saddu Dzari’ah terhadap Penggunaan Aplikasi Fake Global Positioning System (GPS) pada Shopeefood Driver
Abstract. Shopee is a company engaged in online-based buying and selling services. One of the latest features of Shopee is the ShopeeFood service and has standard rules that must b...
Speech, communication, and neuroimaging in Parkinson's disease : characterisation and intervention outcomes
Speech, communication, and neuroimaging in Parkinson's disease : characterisation and intervention outcomes
<p dir="ltr">Most individuals with Parkinson's disease (PD) experience changes in speech, voice or communication. Speech changes often manifest as hypokinetic dysarthria, a m...
Speech, communication, and neuroimaging in Parkinson's disease : characterisation and intervention outcomes
Speech, communication, and neuroimaging in Parkinson's disease : characterisation and intervention outcomes
<p dir="ltr">Most individuals with Parkinson's disease (PD) experience changes in speech, voice or communication. Speech changes often manifest as hypokinetic dysarthria, a m...
Speech, communication, and neuroimaging in Parkinson's disease : Characterisation and intervention outcomes
Speech, communication, and neuroimaging in Parkinson's disease : Characterisation and intervention outcomes
<p dir="ltr">Most individuals with Parkinson's disease (PD) experience changes in speech, voice or communication. Speech changes often manifest as hypokinetic dysarthria, a m...
Research on Style Migration Techniques Based on Generative Adversarial Networks in Chinese Painting Creation
Research on Style Migration Techniques Based on Generative Adversarial Networks in Chinese Painting Creation
Abstract
The continuous progress and development of science and technology have brought rich and diverse artistic experiences to the current society. The image style...
DISCOURSE: KNOWLEDGE, NEWS, AND FAKE INTERTWINED
DISCOURSE: KNOWLEDGE, NEWS, AND FAKE INTERTWINED
Discourse has been a focal point for linguists over an extended period. The multidisciplinary character of the term ‘discourse’ has resulted in diverse approaches aiming to define ...
ANN: adversarial news net for robust fake news classification
ANN: adversarial news net for robust fake news classification
AbstractWith easy access to social media platforms, spreading fake news has become a growing concern today. Classifying fake news is essential, as it can help prevent its negative ...
Deep Learning for Forgery Face Detection Using Fuzzy Fisher Capsule Dual Graph
Deep Learning for Forgery Face Detection Using Fuzzy Fisher Capsule Dual Graph
In digital manipulation, creating fake images/videos or swapping face images/videos with another person is done by using a deep learning algorithm is termed deep fake. Fake pornogr...

