Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties

View through CrossRef
This paper shows how the pavement surface radiation properties can be used to control the thermal environment of 110 kV underground cables in order to increase their ampacity. It is assumed that the ampacity is additionally affected by the cable bedding size and an underground heating pipeline. Thanks to an experimental apparatus, some useful data were collected for the validation of two different finite element method based models that predict the effect of the pavement surface radiation properties on the cable ampacity. The first model corresponds to the experimental apparatus and actual indoor conditions, while the second one corresponds to the theoretical case and assumed outdoor conditions (taking into account the thermal effects of solar radiation, cable bedding size, and heating pipeline). This paper examines two possible cases of outdoor conditions, one corresponding to summer period (the most unfavorable ambient conditions) and another one corresponding to winter period (the most common winter conditions in Serbia). This proposed new method is based on the experimental data and generalized using the finite element method in COMSOL. It is found that the ampacity of the considered 110 kV cable line can be increased up to 25.4 % for the most unfavorable ambient conditions and up to 8 % for the most common winter conditions.
Title: Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties
Description:
This paper shows how the pavement surface radiation properties can be used to control the thermal environment of 110 kV underground cables in order to increase their ampacity.
It is assumed that the ampacity is additionally affected by the cable bedding size and an underground heating pipeline.
Thanks to an experimental apparatus, some useful data were collected for the validation of two different finite element method based models that predict the effect of the pavement surface radiation properties on the cable ampacity.
The first model corresponds to the experimental apparatus and actual indoor conditions, while the second one corresponds to the theoretical case and assumed outdoor conditions (taking into account the thermal effects of solar radiation, cable bedding size, and heating pipeline).
This paper examines two possible cases of outdoor conditions, one corresponding to summer period (the most unfavorable ambient conditions) and another one corresponding to winter period (the most common winter conditions in Serbia).
This proposed new method is based on the experimental data and generalized using the finite element method in COMSOL.
It is found that the ampacity of the considered 110 kV cable line can be increased up to 25.
4 % for the most unfavorable ambient conditions and up to 8 % for the most common winter conditions.

Related Results

Installation Analysis of Matterhorn Pipeline Replacement
Installation Analysis of Matterhorn Pipeline Replacement
Abstract The paper describes the installation analysis for the Matterhorn field pipeline replacement, located in water depths between 800-ft to 1200-ft in the Gul...
Decision-making system and verification of pavement diseases treatment scheme for highway reconstruction and extension
Decision-making system and verification of pavement diseases treatment scheme for highway reconstruction and extension
Abstract Based on the case of a highway reconstruction and extension project in Guangdong Province, a decision-making system for the treatment of the old pavement di...
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
NASA's Europa Clipper mission will characterize the current and recent surface activity of the icy-moon Europa through a wide range of remote sensing observations. In particular, t...
Nondestructive data analysis for pavement profile evaluation
Nondestructive data analysis for pavement profile evaluation
<p>Highway pavements serve the need for safe transportation of human being and freights, so their condition deserves continuous monitoring and assessment. However, pa...
KINERJA MODEL PERKERASAN JALAN DENGAN BLOK PENGAKU
KINERJA MODEL PERKERASAN JALAN DENGAN BLOK PENGAKU
One of the factors causing the cracking of rigid pavement surfaces for roadways is the occurrence of tensile stresses due to vehicle wheel loads that exceed the tensile stresses of...
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
Development of a Continuous Testing Device for Pavement Structure Bearing Capacity
Development of a Continuous Testing Device for Pavement Structure Bearing Capacity
Pavement structure bearing capacity is an important evaluation parameter in pavement design, construction, maintenance management, and reconstruction, and is generally expressed by...
An approach to integrate GPR thickness variability and roughness level into pavement performance evaluation
An approach to integrate GPR thickness variability and roughness level into pavement performance evaluation
<p>It is a truism that pavements deteriorate due to the combined effects of traffic loads and environmental conditions. The manner or ability of a road to meet the de...

Back to Top