Javascript must be enabled to continue!
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model
View through CrossRef
The human body is protected by an immune system which mainly consists of white blood cells (WBCs). There are five types of white blood cells, and each type will fight certain viruses and bacteria that are encountered in the human body. This defence system helps to maintain human health. Consequently, healthy WBCs keep humans healthy. Abnormality in WBCs can cause harmful viruses or bacterial infections. Leukaemia is a common WBCs disease which affects the production of good cells. Early detection is important for advanced treatment for cancer patient. One of the detection methods is by visual detection of the blood microscopic image since the five types of the WBCs are visually distinctive. In current practice, the pathologist will perform the diagnosis manually which may take time if there are many samples to examine. This procedure can be improved by automating it using a computer aided detection system. This paper studied the deep learning detection model of YOLOv5s and the effect of fusing the Squeeze-Excitation (SE) and Convolutional Block Attention Model (CBAM) into the YOLOv5s. It was performed on the four types of the WBCs, eosinophil, lymphocyte, monocyte, and the neutrophil taken from a public dataset. Based on the findings, the proposed method of YOLOv5s-SE, YOLOv5s-CBAM, and YOLOv5s-SE-CBAM produced overall accuracy of 99.5%, 99.5% and 99.4% mAP value and the performance are at par with the deeper model YOLOv5m with 65.8% of a smaller number of hyperparameters.
Title: Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model
Description:
The human body is protected by an immune system which mainly consists of white blood cells (WBCs).
There are five types of white blood cells, and each type will fight certain viruses and bacteria that are encountered in the human body.
This defence system helps to maintain human health.
Consequently, healthy WBCs keep humans healthy.
Abnormality in WBCs can cause harmful viruses or bacterial infections.
Leukaemia is a common WBCs disease which affects the production of good cells.
Early detection is important for advanced treatment for cancer patient.
One of the detection methods is by visual detection of the blood microscopic image since the five types of the WBCs are visually distinctive.
In current practice, the pathologist will perform the diagnosis manually which may take time if there are many samples to examine.
This procedure can be improved by automating it using a computer aided detection system.
This paper studied the deep learning detection model of YOLOv5s and the effect of fusing the Squeeze-Excitation (SE) and Convolutional Block Attention Model (CBAM) into the YOLOv5s.
It was performed on the four types of the WBCs, eosinophil, lymphocyte, monocyte, and the neutrophil taken from a public dataset.
Based on the findings, the proposed method of YOLOv5s-SE, YOLOv5s-CBAM, and YOLOv5s-SE-CBAM produced overall accuracy of 99.
5%, 99.
5% and 99.
4% mAP value and the performance are at par with the deeper model YOLOv5m with 65.
8% of a smaller number of hyperparameters.
Related Results
[RETRACTED] Guardian Blood Balance –Feel the difference Guardian Blood Balance makes! v1
[RETRACTED] Guardian Blood Balance –Feel the difference Guardian Blood Balance makes! v1
[RETRACTED]Guardian Blood Balance Reviews (Works Or Hoax) Does Guardian Botanicals Blood Balance AU Really Works? Read Updated Report! Diabetes and Hypertension is such a health p...
The Nuclear Fusion Award
The Nuclear Fusion Award
The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners w...
Advancements in Steel Surface Defect Detection: An Enhanced YOLOv5 Algorithm with EfficientNet Integration
Advancements in Steel Surface Defect Detection: An Enhanced YOLOv5 Algorithm with EfficientNet Integration
Steel surface defect detection is of utmost importance for ensuring product quality, cost reduction, enhanced safety, and heightened customer satisfaction. To address the limitatio...
Deteksi Plat Nomor Kendaraan Menggunakan Algoritma YOLOv5 dengan Metode Convolutional Neural Network
Deteksi Plat Nomor Kendaraan Menggunakan Algoritma YOLOv5 dengan Metode Convolutional Neural Network
Abstrak. Sistem pengawasan lalu lintas yang efektif sangat dibutuhkan untuk mengelola arus lalu lintas yang semakin kompleks di kota-kota besar. Pemantauan plat nomor kendaraan men...
Blood Cross Matching Without Anti-Human Globulin (AHG) and Bovine Serum: A New Interest for an Old Idea
Blood Cross Matching Without Anti-Human Globulin (AHG) and Bovine Serum: A New Interest for an Old Idea
Abstract
Introduction
Transfusion medicine promotes the safety of blood transfusions by rigorously testing to eliminate risks of infection and hemolytic. The efficacy (to correct ...
Nonproliferation and fusion power plants
Nonproliferation and fusion power plants
Abstract
The world now appears to be on the brink of realizing commercial fusion. As fusion energy progresses towards near-term commercial deployment, the question arises a...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Research on Fault Diagnosis of Steel Surface Based on Improved YOLOV5
Research on Fault Diagnosis of Steel Surface Based on Improved YOLOV5
Steel is an important raw material of fluid components. The technological level limitation leads to the surface faults of the steel, thus the key to improving fluid components qual...

