Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Improving the quantum well properties with n-type InGaN/GaN superlattices layer

View through CrossRef
InGaN/GaN quantum wells have been grown by metal-organic chemical vapor deposition. InGaN/GaN quantum well with n-type InGaN/GaN thin layer or InGaN/GaN superlattice layer were studied. By introducing n-type InGaN/GaN thin layer or InGaN/GaN superlattice layer, the strain in quantum well active area was released, the surface morphology was improved and the density of V-type defect was redued. It was also found that the multiple quantum well photoluminescence intensity and the radiation efficiency of light emitting diodes were both higher than that of the structure without InGaN/GaN superlattice layer.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Improving the quantum well properties with n-type InGaN/GaN superlattices layer
Description:
InGaN/GaN quantum wells have been grown by metal-organic chemical vapor deposition.
InGaN/GaN quantum well with n-type InGaN/GaN thin layer or InGaN/GaN superlattice layer were studied.
By introducing n-type InGaN/GaN thin layer or InGaN/GaN superlattice layer, the strain in quantum well active area was released, the surface morphology was improved and the density of V-type defect was redued.
It was also found that the multiple quantum well photoluminescence intensity and the radiation efficiency of light emitting diodes were both higher than that of the structure without InGaN/GaN superlattice layer.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Correlative Nanoscale Luminescence and Elemental Mapping in InGaN/(Al)GaN Dot‐in‐a‐wire Heterostructures
Correlative Nanoscale Luminescence and Elemental Mapping in InGaN/(Al)GaN Dot‐in‐a‐wire Heterostructures
Ternary InGaN compounds show great promise for light‐emitting diode (LED) applications because of bandgap energies (0.7 – 3.4 eV) that can be tailored to have emission wavelengths ...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...

Back to Top