Javascript must be enabled to continue!
Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
View through CrossRef
Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown of high mobility group box-1 and S100b, both of which are RAGE ligands endogenously expressed in 3T3-L1 cells, also canceled RAGE-medicated adipocyte hypertrophy, implicating a fundamental role of ligands–RAGE ligation. Adipocyte hypertrophy induced by RAGE overexpression is associated with suppression of glucose transporter type 4 and adiponectin mRNA expression, attenuated insulin-stimulated glucose uptake, and insulin-stimulated signaling. Toll-like receptor (Tlr)2 mRNA, but not Tlr4 mRNA, is rapidly upregulated by RAGE overexpression, and inhibition of Tlr2 almost completely abrogates RAGE-mediated adipocyte hypertrophy. Finally, RAGE−/− mice exhibited significantly less body weight, epididymal fat weight, epididymal adipocyte size, higher serum adiponectin levels, and higher insulin sensitivity than wild-type mice. RAGE deficiency is associated with early suppression of Tlr2 mRNA expression in adipose tissues. Thus, RAGE appears to be involved in mouse adipocyte hypertrophy and insulin sensitivity, whereas Tlr2 regulation may partly play a role.
American Diabetes Association
Title: Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
Description:
Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions.
In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity.
RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy.
Furthermore, double knockdown of high mobility group box-1 and S100b, both of which are RAGE ligands endogenously expressed in 3T3-L1 cells, also canceled RAGE-medicated adipocyte hypertrophy, implicating a fundamental role of ligands–RAGE ligation.
Adipocyte hypertrophy induced by RAGE overexpression is associated with suppression of glucose transporter type 4 and adiponectin mRNA expression, attenuated insulin-stimulated glucose uptake, and insulin-stimulated signaling.
Toll-like receptor (Tlr)2 mRNA, but not Tlr4 mRNA, is rapidly upregulated by RAGE overexpression, and inhibition of Tlr2 almost completely abrogates RAGE-mediated adipocyte hypertrophy.
Finally, RAGE−/− mice exhibited significantly less body weight, epididymal fat weight, epididymal adipocyte size, higher serum adiponectin levels, and higher insulin sensitivity than wild-type mice.
RAGE deficiency is associated with early suppression of Tlr2 mRNA expression in adipose tissues.
Thus, RAGE appears to be involved in mouse adipocyte hypertrophy and insulin sensitivity, whereas Tlr2 regulation may partly play a role.
Related Results
Trehalose increases jejunum cytoplasmic lipid droplets and suppresses adipocyte hypertrophy
Trehalose increases jejunum cytoplasmic lipid droplets and suppresses adipocyte hypertrophy
Abstract
Background: Trehalose is a functional disaccharide that has anti-metabolic activities such as suppression of adipocyte hypertrophy in mice and alleviation of impai...
Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications
Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By i...
New and simple Ohmic definition of insulin resistance in lean and obese subjects
New and simple Ohmic definition of insulin resistance in lean and obese subjects
objective:: Insulin enhances the influx of glucose into cells. However, the relationship between glucose and insulin is complex and insulin sensitivity varies widely with age, ethn...
The Influence of Subcutaneous and Visceral Adipocyte Geometries on Metabolic Parameters and Metabolic Regulating Hormones in Obese and Non-Obese Subjects
The Influence of Subcutaneous and Visceral Adipocyte Geometries on Metabolic Parameters and Metabolic Regulating Hormones in Obese and Non-Obese Subjects
Adipose tissue plays a pivotal role in endocrine and metabolic homeostasis. This study aimed to compare subcutaneous and visceral adipocyte measurements, including area, shortest d...
Protein Glycation in Plants—An Under-Researched Field with Much Still to Discover
Protein Glycation in Plants—An Under-Researched Field with Much Still to Discover
Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of...
A Case of Insulin Resistance Secondary to Insulin Induced Localized Cutaneous Amyloidosis.
A Case of Insulin Resistance Secondary to Insulin Induced Localized Cutaneous Amyloidosis.
Abstract
Abstract 4908
Insulin resistance can be a major problem in patients with diabetes mellitus. Although multiple reasons can result in this prob...
GW24-e2259 Evaluation of atherosclerosis in low density lipoprotein receptor defect mice by ultrasound biomicroscopy
GW24-e2259 Evaluation of atherosclerosis in low density lipoprotein receptor defect mice by ultrasound biomicroscopy
Objectives
Low density lipoprotein receptor defect mice model by transgenetic technology was used to detect atherosclerosis by Ultrasound Biology (UBM). And evalu...
Evidence against Pathway-Selective Hepatic Insulin Resistance in Mice
Evidence against Pathway-Selective Hepatic Insulin Resistance in Mice
Insulin suppresses hepatic glucose production and increases hepatic de novo lipogenesis (DNL). Paradoxically, hepatic DNL remains elevated in insulin-resistant subjects, leading to...

