Javascript must be enabled to continue!
Signal Propagation in Resettable Mechanical Logic
View through CrossRef
Abstract
Unconventional computing, such as mechanical1 and microfluidic logic circuits2, quantum gates3, and mechanical metamaterials4 create opportunities for embedded computation, which overcome the power5, package size, and environmental limitations of conventional electronics. Emerging micro-manufacturing capabilities6 with environmentally robust materials enable mechanical logic circuits miniaturization. Kinematically, bistable logic propagates binary signals through cascading gate displacement transitions. Energetically, the inter- and intra- node compliances are tuned for re-programmable signal propagation. Applications need computational architectures which integrate resettable signal propagation7–10, logical operation11–16, and signal storage17–19. While many researchers explore aspects of these elements1, 20–23, none consider energetic limits and propagation dynamics to evaluate and advance the field. Here, we show a generalized model and metrics, validated by experimental results, that enables the design of scale-independent, resettable, mechanical logic circuits. By studying propagation energy flows, we identified non-dimensional operating regimes in which signals propagate and resettable logic is possible. We provide deterministic design methods to evaluate future divergent topologies for displacement-based mechanical logic structures. Our results demonstrate the framework for designing densely integrated mechanical computation systems which harvest available ambient energy to propagate computational cascades. This logic responds to multi-dimensional environmental inputs and thus enables re-programmable, powerless, and embedded computation.
Springer Science and Business Media LLC
Title: Signal Propagation in Resettable Mechanical Logic
Description:
Abstract
Unconventional computing, such as mechanical1 and microfluidic logic circuits2, quantum gates3, and mechanical metamaterials4 create opportunities for embedded computation, which overcome the power5, package size, and environmental limitations of conventional electronics.
Emerging micro-manufacturing capabilities6 with environmentally robust materials enable mechanical logic circuits miniaturization.
Kinematically, bistable logic propagates binary signals through cascading gate displacement transitions.
Energetically, the inter- and intra- node compliances are tuned for re-programmable signal propagation.
Applications need computational architectures which integrate resettable signal propagation7–10, logical operation11–16, and signal storage17–19.
While many researchers explore aspects of these elements1, 20–23, none consider energetic limits and propagation dynamics to evaluate and advance the field.
Here, we show a generalized model and metrics, validated by experimental results, that enables the design of scale-independent, resettable, mechanical logic circuits.
By studying propagation energy flows, we identified non-dimensional operating regimes in which signals propagate and resettable logic is possible.
We provide deterministic design methods to evaluate future divergent topologies for displacement-based mechanical logic structures.
Our results demonstrate the framework for designing densely integrated mechanical computation systems which harvest available ambient energy to propagate computational cascades.
This logic responds to multi-dimensional environmental inputs and thus enables re-programmable, powerless, and embedded computation.
Related Results
Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence
Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence
The analytical expressions for the average intensity and the centroid position of partially coherent decentred annular beams propagating through oceanic turbulence are derived, and...
Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform
Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform
The signal detection in chaotic background has gradually become one of the research focuses in recent years. Previous research showed that the measured signals were often unavoidab...
Rationality and Logic
Rationality and Logic
An argument that logic is intrinsically psychological and human psychology is intrinsically logical, and that the connection between human rationality and logic is both constitutiv...
Greek and Roman Logic
Greek and Roman Logic
In ancient philosophy, there is no discipline called “logic” in the contemporary sense of “the study of formally valid arguments.” Rather, once a subfield of philosophy comes to be...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
A logic of defeasible argumentation: Constructing arguments in justification logic
A logic of defeasible argumentation: Constructing arguments in justification logic
In the 1980s, Pollock’s work on default reasons started the quest in the AI community for a formal system of defeasible argumentation. The main goal of this paper is to provide a l...
Measuring slope-scale crack propagation in weak snowpack layers
Measuring slope-scale crack propagation in weak snowpack layers
<p>For a snow avalanche to release, a weak layer has to be buried below a cohesive snow slab. The slab-weak layer configuration must not only allow failure initiation...
Characteristics of dynamic crack propagation in a weak snowpack layer over its entire life cycle
Characteristics of dynamic crack propagation in a weak snowpack layer over its entire life cycle
<p>For a slab avalanche to release, a weak layer buried below a cohesive snow slab is required, and the system of weak layer and slab must support crack propagation o...

